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The PRC2-binding long  
non-coding RNAs in human and 
mouse genomes are associated 
with predictive sequence features
Shiqi Tu1,2, Guo-Cheng Yuan3,4,5 & Zhen Shao1

Recently, long non-coding RNAs (lncRNAs) have emerged as an important class of molecules involved 
in many cellular processes. One of their primary functions is to shape epigenetic landscape through 
interactions with chromatin modifying proteins. However, mechanisms contributing to the specificity 
of such interactions remain poorly understood. Here we took the human and mouse lncRNAs that 
were experimentally determined to have physical interactions with Polycomb repressive complex 2 
(PRC2), and systematically investigated the sequence features of these lncRNAs by developing a new 
computational pipeline for sequences composition analysis, in which each sequence is considered as a 
series of transitions between adjacent nucleotides. Through that, PRC2-binding lncRNAs were found 
to be associated with a set of distinctive and evolutionarily conserved sequence features, which can be 
utilized to distinguish them from the others with considerable accuracy. We further identified fragments 
of PRC2-binding lncRNAs that are enriched with these sequence features, and found they show strong 
PRC2-binding signals and are more highly conserved across species than the other parts, implying their 
functional importance.

Polycomb group (PcG) proteins are important epigenetic regulators in development and disease1,2. In mamma-
lian cells, although quite a few transcription factors has been found to be linked with the chromatin binding and 
function of PcG proteins1,3–6, yet the underlying mechanisms controlling their site-specific chromatin recruitment 
remain incompletely understood. Since the identification of XIST and HOTAIR7,8, non-coding RNA-mediated 
recruitment of Polycomb repressive complex 2 (PRC2) has become a plausible, potentially sequence-dependent 
mechanism for Polycomb protein and H3K27me3 target regulation1. Recently, a set of RNA coimmunoprecipita-
tion and chip hybridization (RIP-chip) experiments were published, which examined the expression and function 
of hundreds of lncRNAs in three different human cell types, and found more than 200 of them can physically 
interact with the core subunits of PRC29. This result provided the first population-scale evidence of the interac-
tion between lncRNA and PRC2.

Although a number of models have been proposed to elucidate how lncRNAs interact with their protein part-
ners, especially chromatin remodeling factors, and participate in epigenetic regulations10–12, only a few large-scale 
RIP experiments have been published9,13, which makes it extremely difficult to study the role of interactions 
between lncRNAs and chromatin remodeling factors across different cell types. In particular, the precise mech-
anism through which lncRNAs may be targeted by chromatin remodeling factors, such as Polycomb proteins, is 
unclear. For example, it remains under debate whether PRC2 binds to RNA in a sequence dependent manner14–17, 
and it has been proposed that promiscuous and specific RNA binding may both exist for PRC215. Moreover, quite 
a number of PRC2-binding lncRNAs have been discovered in human and mouse genomes7–9,13, but it is still not 
clear whether the mechanisms mediating in vivo PRC2-lncRNA interactions are evolutionarily conserved15.
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In order to address these important questions, we carry out a systematic analysis of the DNA sequence pat-
terns associated with PRC2-binding lncRNAs in both human and mouse genomes. In particular, we have devel-
oped a new computational pipeline for analyzing the composition of long DNA and RNA sequences of variable 
length using a Markov-chain based approach18. It considers each sequence as a series of transitions between 
adjacent nucleotides and uses the frequency of observing each possible transition to characterize the composition 
of this sequence. Through application of this pipeline to the PRC2-binding and non-binding lncRNAs identified 
from publicly available RIP data in human and mouse, we discovered a number of transitions that are differen-
tially favored by these two classes of lncRNAs as the sequence features associated with PRC2-lncRNA interac-
tions. By mapping all possible transitions to a complete quad-tree, we found a considerable fraction of transitions 
favored by PRC2-binding lncRNAs are located in consecutive paths, and these transitions are more likely to be 
simultaneously favored by human and mouse PRC2-binding lncRNAs than the others. We further built predic-
tion models using the sequence features of PRC2-binding lncRNAs as predictors, which could distinguish these 
lncRNAs from the others with considerable accuracy. Remarkably, the fragments of PRC2-binding lncRNAs that 
are highly enriched with these sequence features show significant conservation across species, indicating the 
importance of these fragments.

Results
PRC2-lncRNA interactions in human are associated with significant sequence specificity.  
Figure 1A shows an overview of our computational pipeline for sequence composition analysis. It takes two dis-
tinct groups of sequences as input, e.g. the DNA sequences of genes that are associated and not associated with a 
specific biological function. In this pipeline, a systematic analysis is applied to study the compositional patterns 
of input sequences by modeling each sequence as a Markov chain18–20, which can be dissected into a series of 
transitions between adjacent nucleotides (Fig. 1B). To avoid arbitrarily selecting the exact order of Markov chain 
model, all possible transitions of order 0 through m are utilized (here we chose m =​ 5, which led to 5460 possible 
transitions in total). Next, transitions differentially favored by two sequence groups are selected as their sequence 
features (Fig. 1C; see Methods). Finally, a classification model is constructed by applying Bayesian additive regres-
sion trees (BART)21 analysis to test whether these sequence features can be used to predict the group label of each 
sequence.

Figure 1.  Analysis of the sequence features of human PRC2-binding lncRNAs. (A) Workflow of the 
sequence composition analysis pipeline. (B) Calculation of transition frequency, which is defined as the 
frequency of observing a transition in the given sequence (here order-4 transition CATG→​A is used as 
an example). (C) A building block of quad-tree comprised of 4 transitions with the same prefix. Each line 
represents a transition and the color indicates whether the transition is significantly favored or disfavored by 
human PRC2-positive lncRNAs. (D) The complete quad-tree of height 6 constituted by all possible transitions 
of order 0–5 (placed on level 1-6 accordingly). Particularly, the root is an empty string as the prefix of 4 order-0 
transitions. (E) A branch cut from the quad-tree shown in (D), which starts from level 3 and contains two 
consecutively favored paths (CFPs) CGC→​G→​T→​T and CGC→​G→​T→​C. (F) Summary statistics of the CFPs 
observed in (D), which suggest the human PRC2-favored transitions significantly prefer to connect with each 
other and form CFPs.
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To investigate the role of lncRNAs’ sequence composition in mediating their interactions with PRC2, we first 
collected 261 human lncRNAs that can physically interact with the core subunits of PRC2 in three human cell 
types from Khalil et al.9, together with 227 lncRNAs that were expressed in these cell types but failed to show 
detectable interaction with PRC2. These two groups of lncRNAs were labeled as human PRC2-positive and 
PRC2-negative lncRNAs, respectively. Next, we applied our pipeline to compare their sequence composition, 
with the purpose to uncover the underlying sequence features associated with PRC2-lncRNA interactions. As a 
result, we identified 240 transitions that are significantly favored by human PRC2-positive lncRNAs compared 
to PRC2-negative ones, together with 87 transitions significantly disfavored by them (using P-value <​ 0.05 as 
cutoff), and named them as human PRC2-favored and disfavored transitions, respectively. To make a global 
visualization of these transitions, we constructed a complete quad-tree of height 6 comprised of all 5460 pos-
sible transitions of order 0 through 5, which were placed on level 1 through 6 of the tree accordingly. Here the 
PRC2-favored and disfavored transitions were specially colored as red and green, respectively (Fig. 1C,D).

Besides serving as a platform for visualization, the quad-tree can also be utilized to test whether the selected 
transitions form a nontrivial subset of all 5460 possible transitions, by inspecting their distribution on the 
tree. We first examined the number of PRC2-favored and disfavored transitions on each level, and found the 
vast majority of these transitions are on level 6 (Table 1 and Supplementary Table S1). To estimate the signifi-
cance of this observation, we generated 1000 sets of randomized PRC2-positive and PRC2-negative lncRNAs, 
each of which was derived by randomly shuffling the original group labels of 488 human PRC2-positive and 
PRC2-negative lncRNAs (see Methods), and repeated the same feature selection process on each randomized 
lncRNA set. By this means, only the number of PRC2-favored transitions on level 6 was found to be signifi-
cantly higher than that observed from randomized lncRNA sets (P =​ 0.007, Table 1). Furthermore, although the 
selected transitions showed a rather sparse distribution on quad-tree, we still observed that these transitions, 
especially the PRC2-favored ones, tend to connect with each other across adjacent levels and form consecutive 
paths. To validate this finding, we define consecutively favored/disfavored paths (CFPs/CDPs) as the consec-
utive paths on quad-tree that are completely constituted by PRC2-favored/disfavored transitions (Fig. 1E and 
Supplementary Fig. S1A), respectively. Interestingly, a considerable fraction of PRC2-favored transitions are 
located in CFPs (13.3%, Fig. 1F), and this value is significantly higher than that observed in random simulations, 
in which all the PRC2-favored transitions were randomly re-distributed on each level (P =​ 3E-4 by permutation 
test, see Methods). On the other hand, PRC2-disfavored transitions only exhibited a weak enrichment in CDPs 
compared to that expected by chance (9.2% and P =​ 0.023, Supplementary Fig. S1B).

To understand why PRC2-favored transitions prefer to form consecutive paths, we additionally applied our 
pipeline to analyze the sequence features associated with transcription factor CTCF’s DNA binding in human 
cells (see Supplementary text for details), as the sequence specificity of this interaction is largely known22. 
Strikingly, the vast majority of CTCF-favored transitions identified by our pipeline are located in CFPs and, 
particularly, 52 CFPs are of full length. We compared a representative full-length CFP with CTCF’s binding motif 
obtained from JASPAR database23, and found the 6-mer formed by this full-length CFP can be well matched 
with the motif (Supplementary Fig. S1C). Inspired by this observation, we calculated the motif score of each 
full-length path, which is defined to measure the similarity between the 6-mer formed by all the 6 transitions 
on this path and CTCF’s binding motif (see Supplementary text for details). Interestingly, strong correlation was 
observed between the length of the longest CFP lying on each full-length path and the motif score of this path 
(Supplementary Fig. S1D), suggesting the preference of those favored transitions to form consecutive paths may 
be intrinsically connected with the sequence specificity mediating the binding of corresponding proteins and the 
CFPs observed in this study can be of biological importance.

The sequence features of human PRC2-binding lncRNAs are predictive of PRC2-lncRNA inter-
actions.  In order to evaluate whether the sequence features identified by our pipeline can be used to predict 
PRC2-binding lncRNAs, we took the frequencies of all human PRC2-favored and disfavored transitions as pre-
dictors, and employed BART analysis21 to fit a prediction model. Based on a standard 10-fold cross-validation 
(CV) process, we found this model is able to distinguish human PRC2-positive lncRNAs from the negative ones 
with good accuracy, and the area under the receiver operating characteristic (ROC) curve (AUC) is 0.82 (Fig. 2A), 
which is close to that achieved by the prediction model published previously24. In addition, we also adopted a 

Level Count [Q1, Q3] P value

1 0 [0, 0] 1

2 0 [0, 0] 1

3 0 [0, 1] 1

4 3 [2, 7] 0.63

5 34 [16, 30] 0.19

6 203 [87, 115] 0.007

All 240 [108, 151] 0.048

Table 1.   Distribution of human PRC2-favored transitions on each level of the quad-tree. Here the count 
refers to the number of PRC2-favored transitions on each level. Q1 and Q3 corresponds to the first and third 
quartile of this count obtained from 1000 randomized lncRNA sets, respectively. The P value associated with 
each level was calculated as the fraction of randomized lncRNA sets having an equal or larger number of PRC2-
favored transitions on this level than that observed from real data.
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more stringent approach of model building, which is called as fully blind method here. Similar to the original 
10-fold CV process, all human PRC2-positive and PRC2-negative lncRNAs are divided into 10 subgroups and 
at each cross-validation step, only one subgroup is selected as the testing set, leaving the other 9 subgroups as 
training set. The key difference of the fully blind method is that predictor selection is repeatedly performed 
at each cross-validation step and only lncRNAs in the training set can be used to identify PRC2-favored and 
disfavored transitions as predictors (see Methods), which means the predictors used at each step may not be 
exactly the same as the 240 PRC2-favored and 87 PRC2-disfavored transitions that were used as predictors in the 
original 10-fold CV process (it will be called as “non-blind CV” from now on in this study). In this way, human 
PRC2-binding lncRNAs were predicted with moderate accuracy (AUC =​ 0.66). More specifically, 76% of the top 
261 lncRNAs predicted by the non-blind CV approach are true PRC2-positive ones, and this fraction decreased 
to 66% for the top 261 lncRNAs predicted by the fully blind approach. To explain why prediction models built by 
these two methods exhibited distinct performance, we drew the ROC curve for each of the 10 lncRNA subgroups 
separately and calculated the corresponding AUC value. Remarkably, compared to the non-blind CV method, 
the AUC values of 10 lncRNA subgroups got from the prediction model built by fully blind method exhibited 
much higher variation, with a range from 0.53 to 0.8 (Supplementary Fig. S2A). On the other hand, we devised 
two empirical classification models using the non-blind CV and also the fully blind method, respectively, but 
without involving BART to perform sophisticated model training (see Supplementary text for details). By com-
paring the performance of these empirical models on the same set of human lncRNAs, it could be clearly viewed 
that whether or not to exclude lncRNAs in the testing set from predictor selection can strongly affect prediction 
accuracy (Supplementary Fig. S2B,C). Since the fully blind method is more stringent, we think it’s better to use 
prediction models built by this method to infer how accurately PRC2-binding lncRNAs can be predicted by their 
sequence composition.

Figure 2.  Prediction of the PRC2-lncRNA interactions in human genome based on transition frequencies. 
(A) ROC curves and corresponding AUC values of the prediction models built by the non-blind CV (red line) 
and the fully blind method (green line) in predicting human PRC2-binding lncRNAs. (B) A representative 
PRC2-positive lncRNA locus. Here its PRC2-favored and disfavored fragment are indicated by the red and blue 
bar, respectively, and the red tracks in the middle show the fRIP-seq read counts of EZH2 and SUZ12 in human 
K562 cell line. (C) Boxplot of the average PhastCons conservation scores of the PRC2-favored and disfavored 
fragments identified from human PRC2-binding lncRNAs. (D) Distribution of the fraction of the 500 bp 
fragments randomly selected from human PRC2-binding lncRNAs that overlap with the conserved elements. 
Here the distribution was draw from 105 times of random sampling and dash lines represent the fraction of 
PRC2-favored/disfavored fragments that overlap with the conserved elements.
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Next, we further investigated the distribution of the sequence features of human PRC2-binding lncRNAs 
along their gene bodies. Following this direction, each PRC2-positive lncRNA was scanned by a sliding win-
dow of size 500 bp and a local consistency score was assigned to the sequence fragment in the window, which 
is defined as the sum of the frequencies of all PRC2-favored transitions in this sequence fragment minus those 
of all PRC2-disfavored ones. In this way, sequences with high consistency scores should be highly enriched for 
PRC2-favored transitions and also depleted of PRC2-disfavored ones. Interestingly, these lncRNAs exhibit highly 
non-uniform local consistency scores along their gene bodies, and some fragments of them have clearly higher 
scores than the others (Fig. 2B). Inspired by this finding, we defined the fragment with the highest/lowest con-
sistency score in each human PRC2-positive lncRNA as its PRC2-favored/disfavored fragment (Fig. 2B), respec-
tively. To know whether they can be potentially important for PRC2-lncRNA interactions, we examined the RNA 
binding of PRC2 on these fragments as well as their conservation level across vertebrate genomes (Fig. 2B). For 
the first analysis, we incorporated a recently published RIP-seq dataset of PRC2 core subunit EZH2 and SUZ12 in 
K562 human leukemia cell line14, and calculated the RIP-seq read density at each PRC2-favored and disfavored 
fragment. Interestingly, binding of EZH2 and SUZ12 at PRC2-favored fragments was found to be stronger than 
that at PRC2-disfavored ones (Supplementary Fig. S2D). Meanwhile, we also observed PRC2-favored fragments 
have significantly higher average conservation scores than PRC2-disfavored ones (P =​ 1.7E-04 by paired t-test; 
Fig. 2C). More explicitly, 30% of PRC2-favored fragments overlap with conserved elements25,26, which is signifi-
cantly higher than that of the 500 bp fragments randomly selected from the same lncRNAs (P =​ 6E-04), and this 
fraction for PRC2-disfavored fragments is only 13% (P =​ 2E-04; Fig. 2D).

To check whether the high conservation level of PRC2-favored fragments are directly linked with the aggrega-
tion of sequence features associated with PRC2-lncRNA interactions, we again took the 1000 sets of randomized 
PRC2-positive and PRC2-negative lncRNAs, and reselected a group of pseudo PRC2-favored and disfavored 
fragments for each set of randomized PRC2-positive lncRNAs using the pseudo PRC2-favored and disfavored 
transitions associated with this randomized lncRNA set, which were identified by comparing the sequence com-
position of these lncRNAs with the corresponding randomized PRC2-negative lncRNAs. Then, the same analyses 
as shown in Fig. 2C,D were applied to each set of pseudo PRC2-favored and disfavored fragments identified 
from the randomized PRC2-positive lncRNAs. Remarkably, when comparing the average conservation scores 
of pseudo PRC2-favored and disfavored fragments, only 1.7% of the 1000 randomized lncRNA sets achieved 
P-values lower than that shown in Fig. 2C (Supplementary Fig. S2E,F), which is taken as an empirical estimate of 
the false positive rate (FPR) of the test conducted in Fig. 2C (Supplementary Fig. S2F). Similarly, we calculated 
the P-value for the overlap between each set of pseudo PRC2-favored fragments and conserved elements by com-
paring with the fragments randomly selected from the same lncRNAs, and found only 0.8% of the 1000 sets of 
pseudo PRC2-favored fragments got P-values lower than that shown in Fig. 2D (Supplementary Fig. S2F). Taken 
together, these findings indicate the PRC2-favored fragments, which are highly enriched with sequence features 
associated with PRC2-lncRNA interactions, are generally more conserved than the other parts of the lncRNAs 
they belong to, and, thus, are more likely to be of functional importance.

Comparison of the sequence features of human and mouse PRC2-binding lncRNAs.  The core 
subunits of PRC2 as well as their roles in transcriptional repression are highly conserved from Drosophila to 
mammals1. Besides, interactions between PRC2 and lncRNAs are detected in both human and mouse cells, and 
some of them are shared between two species7,8. Thus, it would be interesting to know whether the PRC2-binding 
lncRNAs in human and mouse genomes tend to share common sequence features, despite that the sequences of 
lncRNAs are known to be generally much less conserved than protein-coding genes27. To answer this question, 
we first studied a RIP-seq dataset of EZH2 generated from mouse embryonic stem cells (mESCs)13. Based on 
this dataset and the mouse lncRNAs that were discovered in parallel with the human ones used in this study28, 
we obtained 153 mouse lncRNAs having physical interactions with EZH2 in mESCs, together with 387 lncRNAs 
that are expressed in mESCs but failed to show detectable interaction with EZH2, which were labeled as mouse 
PRC2-positive and PRC2-negative lncRNAs, respectively (see Supplementary text for details). Subsequently, the 
same sequence composition analysis was applied to these lncRNAs, and 175 mouse PRC2-favored transitions 
as well as 116 PRC2-disfavored ones were identified as the sequence features of mouse PRC2-binding lncRNAs. 
Then, we used the frequencies of these transitions as predictors and employed BART analysis to fit a predic-
tion model of mouse PRC2-binding lncRNAs. Similar to what we observed from human lncRNAs, prediction 
model built by the fully blind method exhibited moderate accuracy (AUC =​ 0.64), clearly lower than the model 
built by the non-blind CV method (AUC =​ 0.88, Fig. 3A). Meanwhile, we fitted a prediction model using all 
human PRC2-positive and PRC2-negative lncRNAs as training set and all the human PRC2-favored and disfa-
vored transitions as predictors, and applied this model on mouse lncRNAs to perform cross-species prediction. 
Interestingly, by this means mouse PRC2-positive lncRNAs can be distinguished from the PRC2-negative ones 
with considerable accuracy (AUC =​ 0.60, Fig. 3A). Since in the cross-species prediction only human lncRNAs 
were involved in predictor selection, its performance should be compared with the prediction model trained with 
mouse lncRNAs using the fully blind method. Thus, we speculate some sequence features are shared between 
human and mouse PRC2-binding lncRNAs.

Inspired by this hypothesis, we analyzed the overlap between the sequence features of human and mouse 
PRC2-binding lncRNAs. In general, only 10% of the PRC2-favored transitions are shared between human 
and mouse (18 of 240/175, Supplementary Fig. S3A), though still significantly higher than expected by chance 
(Fig. 3A). As we have shown, human PRC2-favored transitions prefer to be located on level 6 of the quad-tree and 
connect with each other to form CFPs. It’s reasonable to pay special attentions to these transitions. Interestingly, 
being on level 6 itself doesn’t significantly increase the likelihood of human PRC2-favored transitions being also 
favored by mouse PRC2-binding lncRNAs. However, 19% of the 32 human PRC2-favored transitions located 
in CFPs remained to be mouse PRC2-favored ones (which means 1/3 of the PRC2-favored transitions shared 
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between human and mouse are located in human CFPs), and this fraction increases to 29% for the human 
PRC2-favored transitions located on level 6 and also in CFPs (Fig. 3B). Moreover, we tried building cross-species 
prediction models using all human PRC2-favored transitions and only those located in CFPs as predictors, 
respectively, and tested the performance of these models on mouse lncRNAs. Of note, they achieved AUC val-
ues (0.61 and 0.59) very close to the cross-species prediction model using all human PRC2-favored and dis-
favored transitions as predictors (Supplementary Fig. 3C). Then, we calculated the AUC value of each human 
PRC2-favored transition in predicting mouse PRC2-binding lncRNAs, which is computed by directly assigning 
the frequency of observing this transition in the sequence of each mouse lncRNA as the score of this lncRNA. 
Remarkably, the majority of human PRC2-favored transitions have AUC values greater than 0.5, which suggests 
these transitions tend to also be positively favored by mouse PRC2-binding lncRNAs, and, especially, the ones 

Figure 3.  Human PRC2-favored transitions in CFPs are more likely to be also favored by mouse PRC2-
binding lncRNAs than the others. (A) ROC curves and corresponding AUC values of different prediction 
models in predicting mouse PRC2-binding lncRNAs. The red and green curve correspond to mouse prediction 
models built by the non-blind CV and the fully blind method, respectively, in which mouse PRC2-positive and 
PRC2-negative lncRNAs were used for predictor selection and model training. The blue curve corresponds to 
the human prediction model using human PRC2-positive and PRC2-negative lncRNAs for predictor selection 
and model training. (B) Fractions of different groups of transitions that are identified as mouse PRC2-favored 
transitions. Here, the P-values were computed by right-tailed Fisher’s exact test based on hypergeometric 
distribution. (C) Boxplot of the AUC values of human PRC2-favored transitions in predicting mouse PRC2-
binding lncRNAs. Here the human PRC2-favored transitions are divided into 2 groups based on whether or not 
they are located in CFPs, and the AUC value of a transition is calculated by directly using its frequency in each 
sequence as the prediction score of this sequence. (D) Fraction of mouse PRC2-positive and PRC2-negative 
lncRNAs that contain EZH2 RCS identified from PAR-CLIP-seq data. Here each group of lncRNAs were 
split into two subgroups of equal size by the median of their cross-species prediction scores derived from the 
prediction model trained with human lncRNAs, and the P-values were calculated by right-tailed Fisher’s exact 
test to measure whether the subgroup of lncRNAs with high prediction scores are significantly more likely to 
contain EZH2 RCS compared to the subgroup with low prediction scores. (E) ROC curve and corresponding 
AUC value of the human prediction model in predicting mouse RCS-containing lncRNAs from the RCS-null 
ones (green), and also that in predicting high-confidence mouse PRC2-positive lncRNAs from high-confidence 
mouse PRC2-negative ones (blue).
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falling in CFPs achieved clearly higher AUC values than those out of CFPs (Fig. 3C). Thus, we conclude that the 
association between transitions falling in CFPs and PRC2-binding lncRNAs are more highly conserved between 
human and mouse than those out of CFPs. Again, these findings strongly support the biological significance of 
CFPs.

In recent years, in vivo UV light cross-linking and immunoprecipitation followed by high-throughput 
sequencing (CLIP-seq) experiments have also been widely used to study genome-wide protein-RNA inter-
actions29–32. To make a more comprehensive assessment of our cross-species comparison of PRC2-binding 
lncRNAs, we additionally incorporated a recently published EZH2 PAR-CLIP-seq dataset in mESCs31. We 
obtained 13,764 putative RNA-contact sites (RCSs) of EZH2 from this dataset and mapped them to the mouse 
PRC2-positive and PRC2-negative lncRNAs we defined from the EZH2 RIP-seq data in mESCs. 39.2% of mouse 
PRC2-positive lncRNAs were found to contain at least one EZH2 RCS, and this fraction for mouse PRC2-negative 
ones is only 21.7% (Supplementary Fig. 3D, see Supplementary text for details), indicating a moderate consistency 
between these two datasets. Next, we divided both mouse PRC2-positive and PRC2-negative lncRNAs into two 
subgroups of equal size, based on their cross-species prediction scores derived from the prediction model trained 
with human lncRNAs. Interestingly, almost half of the mouse PRC2-positive lncRNAs with high cross-species 
prediction scores have EZH2 RCS identified from the PAR-CLIP-seq data (Fig. 3D), which is significantly higher 
than that of the PRC2-positive lncRNAs with low prediction scores (29.0%, P =​ 0.003 by Fisher’s exact test), 
indicating they are more likely to be true PRC2-binding lncRNAs. On the other hand, still a considerable faction 
of the mouse PRC2-negative lncRNAs with high cross-species prediction scores were found to contain EZH2 
RCS (29.5%, Fig. 3D), which is also significantly greater than that of the PRC2-negative lncRNAs with low pre-
diction scores (13.9%, P =​ 5E-5), implying many of them may actually have the potential to physically interact 
with PRC2 as predicted by their sequence similarity with the human PRC2-binding lncRNAs. Inspired by these 
findings, we defined high-confidence mouse PRC2-positive lncRNAs as the mouse PRC2-positive lncRNAs that 
also contain RCS of EZH2, and high-confidence mouse PRC2-negative lncRNAs as the mouse PRC2-negative 
lncRNAs with no EZH2 RCS. By taking only these high-confidence lncRNAs into account, we found the accuracy 
of cross-species prediction is even higher (AUC =​ 0.72, Fig. 3E), which strongly supports that a considerable 
proportion of the sequence patterns associated with PRC2-lncRNA interactions are shared between human and 
mouse.

Compare the performance of prediction models based on transition and K-mer frequencies.  
In previous studies, the composition of a sequence was usually analyzed by counting the occurrence of differ-
ent K-mers in it18,33, and typically the count of each K-mer would be further normalized by sequence length to 
represent the frequency of observing this K-mer in the sequence. Here, sequence composition analysis based 
on K-mer frequencies was also applied to study human PRC2-binding lncRNAs. Technically, we calculated the 
frequencies of all possible K-mers of length from 1 through 6 in the DNA sequence of each lncRNA, and searched 
for K-mers that occur in human PRC2-positive lncRNAs with significantly higher or lower frequencies than in 
the PRC2-negative ones (see Supplementary text for details). By using P-value <​ 0.05 as cutoff, 129/83 K-mers 
that are significantly over/under-represented in human PRC2-binding lncRNAs were identified, respectively. The 
prediction model using the frequencies of these K-mers as predictors showed slightly lower accuracy (AUC =​ 0.63 
using the fully blind method) than the model based on transition frequencies (Fig. 4A). To assess the impact 
of lncRNA length, we separately divided the human PRC2-positive and PRC2-negative lncRNAs into two sub-
groups of equal size according to their length, which were named as moderately long and extremely long sub-
group, respectively (the cutoff of lncRNA length to separate these two lncRNA subgroups is 18.6 kb for human 
PRC2-positive lncRNAs and 13.1 kb for PRC2-negative ones). Then, the performance of prediction was evaluated 
on the two subgroups separately. Interestingly, two prediction models achieved similar AUC values on the mod-
erately long subgroup (Fig. 4A), while the model based on transition frequencies exhibited a better accuracy on 
the extremely long subgroup of lncRNAs (AUC =​ 0.70) than the one based on K-mer frequencies (AUC =​ 0.63; 
Fig. 4A). In addition, we also performed the same analysis on mouse lncRNAs and got a similar result (Fig. 4B), 
suggesting this finding is not specific to the human lncRNAs chosen by us and sequence composition analysis 
based on transition frequencies can have plausible performances on extremely long sequences.

It should be noted that besides finding the sequence features associated with PRC2-lncRNA interactions in 
mammalian cells, another main purpose of this study is to develop a new computational pipeline for sequence 
composition analysis based on splitting each sequence into transitions between adjacent nucleotides. We have 
demonstrated sequence composition analysis based on transition frequencies can have different downstream 
analyses from that based on K-mers, e.g. to examine the distribution of selected transitions on a quad-tree, 
which led to the identification of CFPs (Supplementary Fig. S1C and S4D). However, which of these two types 
of methods can have a superior performance highly depends on the context (a theoretical example is given in 
Supplementary text) as well as the implementation of these methods, since the analysis based on K-mers has been 
widely used for years and a large number of computation models have been developed to improve its performance 
and to extend its applications18.

Discussion
In this study, we conducted a systematic sequence composition analysis on known PRC2-binding lncRNAs in 
both human and mouse genomes. To be noted, identifying characteristic sequence features from the lncRNAs 
associated with a specific biological function is important and also computationally challenging. One of the main 
reasons is that the length of lncRNA genes can be quite long and highly variable (here we chose to use the whole 
gene body of lncRNAs for sequence analysis, and a detailed explanation can be found in Supplementary text). In 
our case, the human lncRNAs used here are of size 33.4 ±​ 41.3 kb (average gene length ±​ standard deviation, the 
median length is 15.8 kb), and a large fraction of them may not be well annotated (two examples can be seen in 
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Fig. 2B and Supplementary Fig. S2H), which makes the sequence analysis even more complicated. Here, we pre-
sented a new computational pipeline for analyzing the compositional patterns of long sequences, which considers 
each sequence as a series of transitions between adjacent nucleotides and can systematically search for transitions 
that occur in the sequences of interest with significantly different frequencies compared to the control sequences. 
Besides, the pipeline is incorporated with a set of computational analyses to visualize all candidate transitions 
using a complete quad-tree and then to dissect the distribution of selected transitions on the tree. Applying it to 
compare the sequences of PRC2-binding and non-binding lncRNAs in human and mouse genomes, we identi-
fied a large pool of transitions as features of PRC2-binding lncRNAs in each species, and found those transitions 
favored by PRC2-binding lncRNAs exhibit a significant preference to connect with each other and form CFPs 
on the quad tree, which seems not to be sufficiently appreciated by other similar studies. Interestingly, although 
the sequence features of PRC2-binding lncRNAs show a low overlap between human and mouse, the major-
ity of human PRC2-favored transitions have AUC values higher than 0.5 in predicting mouse PRC2-binding 
lncRNAs, especially for those falling in CFPs (Fig. 3C). Although lncRNAs generally are thought to be poorly 
conserved27,34–36, our findings suggest PRC2-lncRNA interactions in mammalian cells are clearly associated with 
specific sequence patterns and these patterns tend to be conserved across species, which can be further supported 
by the good performance of cross-species predictions (Fig. 3D).

Another interesting aspect of our findings is that the sequence composition of lncRNAs can be highly com-
plex along their gene bodies, which supports the hypothesis that such a great complexity might be necessary 
for its functions37. For example, as shown in Fig. 2D and Supplementary Fig. S2G,H, the sequence features of 
PRC2-binding lncRNAs showed a highly non-uniform distribution along their gene bodies and, particularly, 
some regions are significantly more enriched with these features than the other parts. Taking a step further, we 
recognized a set of fragments that are highly enriched with these features from human PRC2-binding lncR-
NAs, and found these fragments are significantly more highly conserved than the other parts of these lncRNAs, 
implying they may be potentially important for the function of these lncRNAs. This observation can provide a 
different viewpoint to understand the low conservation levels of lncRNAs in mammals, and implies evolutionary 
analyses can still serve as a useful tool for identifying functional elements of lncRNAs38. Taken together, our 
analysis indicates that, although the sequences of lncRNAs are of tremendous complexity, they still share quite a 
number of recurring patterns. Using these patterns as clues, our predictions based on global and local sequence 
compositions can serve as a useful guide for experimental biologists to investigate the potential connections 
between Polycomb group proteins and lncRNAs in a tissue-specific manner, and also to further dissect how these 
connections are established. For future studies, even more sophisticated models, e.g. nonhomogeneous Markov 
model39, may be employed to further understand the heterogeneous sequence composition patterns of lncRNAs.

Material and Methods
Selection of human PRC2-positive and PRC2-negative lncRNAs.  Khalil et al. used RIP-chip experi-
ments to examine the interaction between ~900 human lncRNAs and SUZ12 or EZH2, two well-known core sub-
units of PRC2, in three human cell types: HeLa, lung fibroblasts and foot fibroblasts9. In these lncRNAs, 261 were 
found to have physical interactions with PRC2 in at least one cell type, which are defined as human PRC2-positive 

Figure 4.  Compare the performance of prediction models based on K-mer and transition frequencies.  
(A,B) AUC values of the prediction models based on transition (red bars) or K-mer (blue bars) frequencies, 
which were trained and tested by the human (A) and mouse (B) lncRNAs, respectively. Here the prediction 
models were built by the fully blind method, and all human/mouse PRC2-positive and PRC2-negative lncRNA 
were separately divided into two subgroups of equal size according to their length, termed as the moderately long 
and the extremely long subgroup, to access the performance of these models on lncRNAs of different length.
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lncRNAs here. Besides, 227 lncRNAs that are expressed in these cells but failed to show detectable interaction 
with PRC2 are defined as human PRC2-negative lncRNAs.

To infer the transcription start site (TSS) and then the coding strand of each lncRNA, we collected all available 
ChIP-Seq data of histone mark H3K4me3, which is known to be mainly associated with active gene promoters, 
from ENCODE project40,41. All ChIP-Seq reads were mapped to both ends of each annotated lncRNA locus and 
the one with higher overall H3K4me3 signal intensities was considered as putative TSS, leaving the other end as 
putative transcription end site (TES). To assess the validity of this approach, we applied it to RefSeq annotated 
protein-coding genes42 and found for the 15655 genes longer than 5 kb, the accuracy is around 86%. Additionally, 
since many lncRNAs used in this study lack reliable exon annotations, we use the whole gene body of lncRNAs to 
perform sequence composition analysis (a detailed explanation can be found in Supplementary text).

Decomposition of long DNA sequences into transitions between adjacent nucleotides and 
selection of differentially favored transitions as sequence features.  To start sequence decompo-
sition, each sequence is considered as Markov chain of transitions between neighboring nucleotides. Then, the 
composition of this sequence can be described by the frequencies of observing all possible transitions in it, which 
are produced by enumerating the order of Markov chain from 0 to m (here m =​ 5 was used, resulting in a total 
number of 5460 different transitions). Taking order-4 transition CATG→​A as an example (Fig. 1B), its transition 
frequency in a given sequence is calculated as

→ = =
∑ ∈

⁎Transition frequency CATG A N CATGA
N CATG

N CATGA
N CATGX

( ) ( )
( )

( )
( )

,
(1)X A C G T{ , , , }

Here, N(CATGA) is the times of observing 5-mer CATGA in this sequence.
To find transitions differentially favored by the sequences of PRC2-positive and PRC2-negative lncRNAs as 

sequence features of PRC2-binding lncRNAs, Welch’s two-sample t-test is applied to compare the frequencies of 
each transition between these two sequence groups. If the frequencies of a transition in PRC2-positive lncRNAs 
are significantly higher (lower) than those in PRC2-negative ones with P-value <​ 0.05, it will be classified as a 
PRC2-favored (disfavored) transition.

Examine the distribution of PRC2-favored and disfavored transitions on the quad-tree.  The 
distribution of human PRC2-favored and disfavored transitions on the quad-tree was examined from two per-
spectives. First, the number of favored and disfavored transitions on each level was counted and compared with 
that got from 1000 sets of randomized PRC2-positive and PRC2-negative lncRNAs. In each randomized lncRNA 
set, the original group label of 488 human PRC2-positive and PRC2-negative lncRNAs were randomly shuffled, 
and transitions differentially favored by these randomized lncRNAs were re-selected using the same criteria. 
Finally, an empirical P-value was calculated for each level as the fraction of randomized lncRNA sets that resulted 
in an equal or higher number of PRC2-favored/disfavored transitions on this level.

To check whether the PRC2-favored/disfavored transitions prefer to connect with each other and form con-
secutively favored/disfavored paths (CFPs/CDPs), the fraction of them located in CFPs/CDPs was calculated and 
compared to that got from 1E +​ 06 times of random permutations. In each random permutation, all PRC2-favored/
disfavored transitions were randomly re-selected from the tree, with keeping the number of selected transitions on 
each level unchanged. Then, an empirical P-value was calculated as the fraction of random permutations that led 
to an equal or higher proportion of PRC2-favored/disfavored transitions falling in CFPs/CDPs.

Prediction of PRC2-binding lncRNAs based on the sequence composition of lncRNAs.  To 
build the prediction model of PRC2-positive lncRNAs, the frequencies of all PRC2-favored and disfavored tran-
sitions/K-mers were used as predictors, and Bayesian additive regression trees (BART)21 analysis was applied to 
perform model fitting. Here BART was called by using its R package implementation with the default parameter 
settings, except the number of regression trees was set to be 500. The overall performance of each model was 
quantified by the area under the receiver operating characteristic (ROC) curve (AUC), which equals 1 if the 
model made a perfect prediction and 0.5 if the prediction was random. Besides, a more stringent approach of 
model building, termed as fully blind method, was also used here. The only difference of this approach is that 
predictor selection was repeatedly performed at each cross-validation step and only lncRNAs in the training 
set can be used to identify transitions differentially favored by PRC2-positive and PRC2-negative lncRNAs as 
predictors. In the cross-species prediction, no cross-validation was performed and all human PRC2-positive 
and PRC2-negative lncRNAs were used to train the prediction model, which was then applied to mouse 
PRC2-positive and PRC2-negative lncRNAs.

Definition of PRC2-favored/disfavored fragments and conservation analyses.  To find lncRNA 
fragments that are highly enriched for PRC2-favored transitions and depleted of PRC2-disfavored ones, each 
human PRC2-positive lncRNA was scanned by a sliding window of size 500 bp, and a local consistency score was 
assigned to the DNA sequence in the window, which is defined as the sum of the frequencies of all PRC2-favored 
transition in this sequence fragment minus the sum of the frequencies of all PRC2-disfavored ones. Then, the 
500-bp fragment with the highest/lowest score of each PRC2-positive lncRNA was defined as its PRC2-favored/
disfavored fragment, respectively.

To measure the conservation levels of these fragments, PhastCons conservation scores of human genome were 
downloaded from UCSC genome browser (the 44-way version was used here)43. Additionally, 1354034 conserved 
elements annotated by GERP (Genomic Evolutionary Rate Profiling) software were obtained from its website25,26, 
which cover about 7% of the human genome. To assess whether the selected lncRNA fragments contain more 
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conserved elements than expected by chance, 1E +​ 05 times of random simulations were performed. At each time, 
a 500-bp fragment was randomly chosen from each PRC2-positive lncRNA, and the fraction of these random 
fragments that overlap with the conserved elements was calculated. Finally, an empirical P value was calculated as 
the proportion of simulations showing an equal or higher fraction of overlapping.
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Supplementary text 

Analysis of the sequence features associated with transcription factor CTCF’s DNA binding 

To dissect whether the sequence features identified by our sequence composition analysis pipeline, 

as well as the consecutively favored paths (CFPs) formed by them with significant preference, have 

any connection with the sequence specificity of protein binding, we applied our pipeline to analyze 

the DNA sequences bound by transcription factor (TF) CTCF in human H1 embryonic stem cells. We 

applied MACS to the ChIP-Seq data of CTCF in H1 cell line generated by ENCODE project1 , and 

picked 1000 top CTCF non-promoter binding peaks from MACS output. Then, we extracted the 1-kb 

long DNA sequences around the summit of these peaks, and defined them as CTCF-positive 

sequences. Here, we removed CTCF promoter peaks that fall within 1.5kb from the transcription start 

site of any RefSeq annotated gene, as usually a large fraction of CTCF binding sites in mammalian 

cells are located in gene promoters2 and the sequence composition of gene promoters is quite 

different from the other parts in genome. On the other hand, we randomly selected the same number 

of 1-kb sequences from the intergenic regions of human genome that don’t overlap with any CTCF 

peak, and defined them as CTCF-negative sequences. Next, we applied the sequence composition 

analysis pipeline to these two groups of sequences, and identified 558/389 transitions that are 

significantly favored/disfavored by CTCF-positive sequences compared to the negative ones with P-



value lower than 1E-15 (by 2-tailed Welch t-test). Surprisingly, a very large fraction of CTCF-favored 

transitions are located in CFPs and, especially, 52 CFPs formed by these transitions are of full length, 

which means they start from the root of the quad-tree and end at the 6th level (Supplementary Fig. 

S1C). 

  A direct by-eye comparison between the DNA binding motif of CTCF obtained from JASPAR 

database3 and a representative full-length CFP suggests that the 6-mer formed by all the 6 

consecutive transitions on this CFP can be well aligned with a highly informative part of CTCF’s 

binding motif (Supplementary Fig. S1C). To systematically investigate this associations, we defined 

a motif score for each 6-mer to measure its similarity with the given motif as 

܍ܚܗ܋ܛ	܎ܑܜܗۻ ൌ 	 ܠ܉ܕ
૟ሽିࡸ,…,ሼ૙,૚∋࢚

ሼ෍܏ܗܔ૚૙ሺࡼሺ࢚ ൅ ,࢏ ሻ࢏ࡿ

૟

ୀ૚࢏

ሻሽ																																																																						ሺ૚ሻ 

Here L is the length of motif, P(i,j) is the element of its position frequency matrix at row i and column 

j, and Si is the numerical expression of the ith nucleotide of this 6-mer (Si=1, 2, 3, 4 corresponds to 

nucleotide A, C, G, T, respectively). Additionally, if a 6-mer’s motif score is lower than that of its 

reverse complementary, the higher score will be assigned to both of them. Then, we divided all the 46 

possible full-length paths on the quad-tree into 4 groups, based on the length of the longest CFP on 

each path (here isolated CTCF-favored transitions were taken as CFPs of length 1), and calculated 

the motif score of the 6-mer corresponding to each full-length path. Interestingly, the CTCF motif 

scores of these K-mers obviously correlate with the maximum CFP lengths of these paths, and the 

52 full-length CFPs have the highest motif sores among the 4 groups (Supplementary Fig. S1D), 

suggesting the preference of those favored transitions to be connected with each other across 

adjacent tree levels is not a trivial observation and is intrinsically connected with the sequence 

specificity mediating protein bindings. 

Building empirical classification models of PRC2-binding lncRNAs 

To investigate whether PRC2-binding lncRNAs can be predicted by their sequence features in a 

simple way, as well as to infer the improvement of prediction accuracy achieved by the model fitting 

process using BART, we additionally devised an empirical classification model to predict human 

PRC2-binding lncRNAs without involving BART to perform sophisticated model fitting, which is named 

as “reward-and-punish” model here. We first build this model using the fully blind method as described 

in main text. Again, all human PRC2-positive and PRC2-negative lncRNAs are divided into 10 

subgroups. At each step, one subgroup is selected as the testing set, leaving the other 9 subgroups 

to serve as the training set, and only lncRNAs in the training set can be used to identify PRC2-favored 

and disfavored transitions as predictors (here the same cutoff P<0.05 is used). Then, for each lncRNA 

in the testing set, the frequency of observing each PRC2-favored/disfavored transition in its sequence, 



saying Ftesting, is compared with the frequencies of this transition in the sequences of training lncRNAs, 

and the reward and punishment to this lncRNA are determined based on following rules: 

1) For each PRC2-favored transition, check whether Ftesting>μnegative+b*σnegative is true (μnegative and 

σnegative is the mean and standard deviation of the frequencies of this transition of PRC2-negative 

lncRNAs in the training set, respectively, and b is a constant), and give the testing lncRNA a 

reward 1/M if the answer is yes (M is the number of predictors identified from the training lncRNAs 

at this step); meanwhile, check whether Ftesting<μpositive-b*σpositive is true (μpositive and σpositive is the 

mean and standard deviation of the frequencies of this transition of PRC2-positive lncRNAs in 

the training set, respectively), and give the lncRNA a punishment 1/M if the answer is yes. 

2) For each PRC2-disfavored transition, check whether Ftesting<μnegative-b*σnegative is true, and give the 

testing lncRNA a reward 1/M if the answer is yes; meanwhile, check whether 

Ftesting>μpositive+b*σpositive is true, and give the lncRNA a punishment 1/M if the answer is yes. 

Finally, the prediction score of each testing lncRNA is calculated as the sum of all the reward got by 

it minus the sum of all the punishment got by it. In this way, we found human PRC2-positive lncRNAs 

can be better distinguished from PRC2-negative ones using the empirical model with b lying between 

0 and 0.5 (Supplementary Fig. S2B), and the highest AUC value was close to 0.60, which is still lower 

than that got by the prediction model fitted by BART using the same fully blind method. Interestingly, 

the empirical models with b>1 (which means the testing lncRNAs have low likelihood to get reward 

and punishment) got AUC values close to or lower than 0.5 (Supplementary Fig. S2B), implying 

prediction of PRC2-binding lncRNAs based on their sequence composition can be better achieved by 

combining a number of weak classifiers. 

  On the other hand, we also tried building an empirical classification model using the non-blind CV 

process as described in main text. Here, we directly chose the 240 and 87 human PRC2-favored and 

disfavored transitions identified in main text as predictors, and divided all PRC2-positive and PRC2-

nagative lncRNAs into 10 subgroups to perform a 10-fold cross-validation. Next, we adopted the same 

rules to calculate the reward and punishment for each testing lncRNA. By this means, the empirical 

model exhibited a similar performance (AUC~0.8-0.85 by models with b lying between 0 and 2, 

Supplementary Fig. S2C) to that achieved by the prediction model fitted by BART using the non-blind 

CV method. 

Evaluate the P-value cutoff used for predictor selection 

To see whether the prediction can be made with a smaller number of predictors compared with the 

original prediction model shown in main text, we tried building a prediction model using only the 

human PRC2-favored and disfavored transitions with P-value<0.01 as predictors. By this means, 66 

transitions in total were selected, and the prediction model exhibited a similar (AUC=0.81 using the 



non-blind CV method) or reduced accuracy (AUC=0.61 using the fully blind method). Considering the 

second method is more stringent, we speculate that P-value<0.05 can serve as a more reasonable 

cutoff for predictor selection than P-value<0.01. Besides, this finding also implies that the relatively 

low accuracy of the prediction model built by the fully blind method may not be simply explained by 

over-fitting, which is usually indicated by an observation that the model using more predictors tends 

to show a lower accuracy, as evaluated by the testing set4. 

Explanation of using the whole gene body of lncRNAs for sequence composition analysis 

In this study, we extracted the sequence of the entire gene body of each lncRNA to perform sequence 

composition analysis. This is mainly due to two reasons. First, several recent studies published by 

different labs suggested that EZH2/PRC2 may directly interact with the nascent transcripts of many 

genes 5-7, and a very large fraction of the interaction sites identified from corresponding CLIP-seq 

experiments were found to be located in regions annotated as introns6,8,9. Second, the lncRNAs used 

here were initially profiled using custom-design tiling arrays, which are known to have a lower 

resolution and higher noise levels than sequencing based platforms. For example, we collected the 

annotation of 4859 lncRNA exons from Khalil et al.10 (in total they cover about 16.24% of the gene 

body of these lncRNAs), and found quite a number of the 488 human lncRNAs used in this study have 

no exon annotations (Fig. 2B). Moreover, these exon annotations show clear differences from other 

gene annotations, such as those provided by RefSeq (Supplementary Fig. S2G-H). On this account, 

we finally decided to use the entire gene body of lncRNAs to perform sequence composition analysis, 

in order to reduce the risk of missing regions potentially important for PRC2-lncRNA interactions. 

  On the other hand, we also found that the difficulty posed by using the entire gene body for 

sequence analysis can be largely overcome by focusing the study on sequence features associated 

with PRC2-lncRNA interactions. Here we use the PRC2-favored and disfavored fragments identified 

by us as examples. 16.9% of the PRC2-disfavored fragments overlap with the exons obtained from 

Khalil et al., which is close to the fraction of the lncRNA gene bodies covered by these exons, and 

this fraction for PRC2-favored ones is as high as 26.2%. Of note, we have shown ~30% of the PRC2-

favored fragments overlap with annotated conserved elements, indicating a considerable part of the 

important building blocks of these lncRNAs may not be covered by these 4859 exons. Beside the 

lncRNA shown in Fig. 2B, we additionally selected two representative human PRC2-binding lncRNAs 

to illustrate the power of sequence composition analysis. For the well-studied PRC2-binding lncRNA 

XIST, its PRC2-favored fragment is at the second exon (based on RefSeq gene annotations, 

Supplementary Fig. S2G), which is not in the exon list obtained from Khalil et al. On the other hand, 

we found the PRC2-favored fragment of lncRNA chr13:90799274-90818300 is not covered by either 

RefSeq annotated gene exons (the closest RefSeq annotated lncRNA is MIR17HG) or the exons got 

from Khalil et al. (Supplementary Fig. S2H). However, by incorporating a recently published RIP-seq 



dataset of EZH2 and SUZ12 in K562 cells, we found the transcript generated from this fragment can 

strongly interact with these two PRC2 core subunits (Supplementary Fig. S2H), suggesting our 

analysis can largely recover the missing building blocks important for the function of PRC2-binding 

lncRNAs. 

Definition of mouse PRC2-binding lncRNAs 

We collected 1666 putative mouse lncRNAs from Guttman et al.11, which were discovered by using a 

similar method to the human lncRNAs studied in Khalil et al.10, and lifted-over them to mm9 mouse 

genome assembly. Next, we obtained 8670 PRC2-associated RNA tags from Zhao et al.12, which 

were generated by RIP-seq experiments against EZH2 in mouse embryonic stem cells (mESCs), and 

mapped them to these mouse lncRNAs. In total, we got 283 mouse lncRNAs that overlap with PRC2-

associated RNA tags. Meanwhile, we also mapped Pol2 ChIP-Seq peaks of mESCs to these mouse 

lncRNAs, and found 540 mouse lncRNAs contain at least one Pol2 peak, which were taken as 

lncRNAs expressed in mESCs13. Finally, we defined mouse PRC2-positive lncRNAs as the 153 

mouse lncRNAs that overlap with both PRC2-associated RNA tags and Pol2 ChIP-Seq peaks, and 

defined mouse PRC2-negative lncRNAs as the other 540-153=387 mouse lncRNAs that overlap with 

Pol2 ChIP-Seq peaks but contain no PRC2-associated RNA tag. 

To further validate our cross-species prediction, we collected 13,764 putative RNA-contact sites 

(RCSs) of EZH2 in mESCs from Kaneko et al 6 (by personal communication with the authors. The list 

of RCSs obtained from the GEO webpage of Kaneko et al contains only 6784 RCSs, which was said 

to be generated using slight different and more stringent parameters), which were identified from the 

corresponding PAR-CLIP-seq data, and mapped them to the 540 putative mESC-expressed lncRNAs. 

As a result, 144 lncRNAs were found to contain at least one RCS, and 60 of them (41.7%) were 

previously classified as mouse PRC2-positive lncRNAs based on the RIP-seq data of EZH2 published 

in Zhao et al 12. More explicitly, 39.2% of mouse PRC2-positive lncRNAs contain at least one RCS of 

EZH2, while this fraction for mouse PRC2-negative lncRNAs is only 21.7%. Furthermore, mouse 

PRC2-positive lncRNAs are also more likely to contain more than one RCSs than PRC2-negative 

ones (Supplementary Fig. 3D). Interestingly, we found for both mouse PRC2-positive and PRC2-

negative lncRNAs, lncRNAs with high prediction scores derived from the model trained with human 

lncRNAs (Fig. 3D and Supplementary Fig. 3F) and also from the model trained with mouse lncRNAs 

(Supplementary Fig. 3E) are more likely to contain EZH2 RCS than those with low prediction scores, 

indicating the definition of PRC2-positive ad PRC2-negative lncRNAs only based on single RIP/CLIP-

seq dataset may not be quite reliable and inherent sequence patterns can potentially be utilized to 

correct the false positives and false negatives in them. Then, we defined the 144 lncRNAs that contain 

at least one RCS as RCS-containing lncRNAs and the other 540-144=396 lncRNAs as RCS-null ones. 

By using the prediction model trained with human lncRNAs, we found mouse RCS-containing 



lncRNAs can be distinguished from RCS-null ones with considerable accuracy (AUC=0.66, Fig 3E). 

Finally, to combine these two classes of lncRNA labels, we defined the 60 mouse PRC2-positive 

lncRNAs that also contain EZH2 RCS as high-confidence mouse PRC2-positive lncRNAs, and the 

303 mouse PRC2-negative lncRNAs without any EZH2 RCS as high-confidence mouse PRC2-

negative lncRNAs. Again, by using the human prediction model to perform cross-species prediction, 

we found high-confidence mouse PRC2-positive lncRNAs can be distinguished from the high-

confidence PRC2-negative ones with clearly better accuracy (AUC=0.72, Fig 3E). 

Compare RNA contact sites of EZH2 with PRC2-favored fragments 

Here, we tried using the EZH2 RCSs to assess the method we proposed to recognize PRC2-favored 

fragments in human lncRNAs. Again, a 500bp sliding window was used to scan each mouse RCS-

containing lncRNA, and the local consistency score of the sequence fragment in the sliding window 

was calculated as the sum of the frequencies of all human PRC2-favored transitions in this sequence 

fragment minus those of all human PRC2-disfavored ones. Then, we selected the fragment with the 

highest and the lowest consistency score of each mouse RCS-containing lncRNA as its PRC2-favored 

and disfavored fragment, respectively. Of note, here we used the sequence features of human PRC2-

binding lncRNAs to detect PRC2-favored/disfavored fragments for mouse lncRNAs, so that these 

mouse fragments were identified by using the same sequence model as the human ones. Interestingly, 

similar to what we observed in human, 37.5% of mouse PRC2-favored fragments (54 of 144) overlap 

with mouse conserved elements (also annotated by GERP program), and this fraction is significantly 

higher than that expected by chance (right-tailed P-value<1E-06 by the same random permutation 

test as that shown in Fig. 2D). Meanwhile, only 10.4% of mouse PRC2-disfavored fragments overlap 

with conserved elements (15 of 144), which is slightly lower than that expected by chance (left-tailed 

P-value=0.03). Again, these findings can support our hypothesis that a considerable proportion of the 

sequence patterns associated with in vivo PRC2-lncRNA interactions are shared between human and 

mouse.  

On the other side, we only observed a small number of mouse PRC2-favored fragments (9.7%, 14 

of 144) directly cover EZH RCS, though it’s still significantly higher than expected by chance (right-

tailed P-value=0.0097 by random permutation test) and also higher than that of mouse PRC2-

disfavored fragments (4.2%, 6 of 144, left-tailed P-value =0.3931). (If we switched to use those 6784 

more stringent RCSs, we got 92 RCS-containing lncRNAs. Among these lncRNAs, 11 of the PRC2-

favored fragments directly cover EZH2 RCS, with empirical P=0.0013, and only 1 PRC2-disfavored 

fragment overlaps with RCS.) It should be of note that the main purpose of defining PRC2-favored 

fragments is to investigate whether the aggregation of the sequence features associated with PRC2-

lncRNA interactions at certain genomic regions is potentially linked with the functional importance of 

these regions, and for simplicity, we only took one 500bp fragment with the highest score of each 



PRC2-binding lncRNA as the representative region for downstream analysis (here PRC2-disfavored 

fragment with the lowest score of each lncRNA is used as control). As we have found PRC2-lncRNA 

interactions in human and mouse exhibit clear sequence specificities, it’s reasonable to speculate the 

direct contact sites of PRC2 on lncRNAs are very likely to be enriched with sequence features 

associated with PRC2-lncRNA interactions, but we do not intend to say PRC2-lncRNA interactions 

should always happen at the 500bp fragment with the highest score of each lncRNA. Following this 

direction, we calculated the local consistency score around the 400 EZH2 RCSs falling in the 540 

mouse lncRNAs used in this study, which was defined to the 500bp sequence fragment centered at 

the middle of each RCS. Besides, we generated 100 sets of random control regions for these RCSs 

and at each time a 500bp control region was randomly selected for each RCS from the same lncRNA 

without overlapping with any identified EZH2 RCS. Interestingly, the 400 EZH2 RCSs falling in 

lncRNAs in general exhibit obviously higher local consistency scores than the random control regions 

(Supplementary Fig. 3G), suggesting the local sequences around these RCSs are more enriched with 

the sequence features associated with PRC2-lncRNA interactions compared to the other parts of the 

lncRNAs they belong to.  

Sequence feature analysis of the RNA contact sites of EZH2 falling in lncRNAs 

To directly find the sequence features associated with the RNA contact sites of PRC2 on lncRNAs, 

we specially analyzed the composition of sequences surrounding the EZH2 RNA contact sites (RCSs) 

identified from PAR-CLIP-seq data in mESCs. First, EZH2 RCSs located within 500bp from each 

other were merged together, and we defined EZH2 RCS fragment as the 500bp sequence fragment 

surrounding the center of each merged RCS. Since this study mainly focuses on interactions between 

PRC2 and lncRNAs, we only took the 310 RCS fragments falling in the 540 putative ESC-expressed 

lncRNAs for sequence analysis. As negative controls, we randomly chose the same number of 500bp 

sequence fragments from the high-confidence mouse PRC2-negative lncRNAs defined by us. By 

using our sequence composition analysis pipeline to compare the 310 EZH2 RCS fragments with the 

negative control sequences, we identified 190/110 transitions that are significantly favored/disfavored 

by EZH2 RCS fragments (using P-value<0.05 as cutoff). However, this time we found thymine (T) is 

significantly over-represented in these fragments and cytosine (C) is significantly under-represented 

(Supplementary Table 7). Specifically, for those transition of order 0-2, all the transitions that are 

significantly favored by RCS fragments end up with T, and all the transitions are significantly 

disfavored end up with C, though not all the transitions that end up with T/C are significantly 

favored/disfavored. As these RCSs were originally detected by taking advantage of the T-to-C 

transitions produced by PAR-CLIP procedure6,14, we speculate the enrichment of T and depletion of 

C in EZH2 RCSs may not be real sequence features of PRC2’s RNA contact, and moved to rescale 

the frequencies of all the transitions of order>0 by the frequency to observe their last nucleotide in 

each sequence (the 4 order-0 transitions, i.e. the nucleotide frequencies of A,T,G and C, were 



excluded from the following analysis). For example, rescaled transition frequency CATGA of a 

sequence is calculated as the original transition frequency CATGA divided by the frequency of 

observing nucleotide A in this sequence. After rescaling, we repeated the feature selection procedure, 

and got 181/99 transitions that are significantly favored/disfavored by EZH2 RCS fragments, which 

were name as RCS-favored and disfavored transitions (Supplementary Table 7). 

Again, we used a complete quad-tree of height 6 to visualize the distribution of these selected 

transitions (Supplementary Fig. 4A). The RCS-favored transitions were also found to strongly prefer 

to form consecutively favored paths (CFPs, Supplementary Fig. 4B), while the RCS-disfavored ones 

showed a relatively weak preference to form consecutively disfavored paths (CDPs, Supplementary 

Fig. 4C). Finally, we applied the same fully blind approach and built a prediction model to distinguish 

the 310 EZH2 RCS fragments falling in lncRNAs from the corresponding negative control sequences. 

In this way, the model achieved a clearly lower accuracy (AUC=0.59, Supplementary Fig. 4C) 

compared to the prediction of RCS-containing lncRNAs.  

In addition, we also performed de novo motif discovery around the RNA contact sites of EZH2. Again, 

we took the 310 500bp EZH2 RCS fragments falling in lncRNAs as well as the corresponding negative 

control sequences selected from high-confidence mouse PRC2-negative lncRNAs. Then, we 

randomly split both the RCS fragments and the negative control sequences into two subgroups of 

equal size, and only used the first subgroup as input for the MEME suite (both MEME and DREME in 

the suite were used here) to perform de novo motif finding15. MEME was ran with the default 

parameter setting, and the analysis with DREME was carried for two times. In the first time, we used 

the first subgroup of negative control sequences as input control sequences, and in the second time, 

we asked DREME to create a set of control sequences by randomly shuffling the RCS sequences 

while preserving their dimer frequencies. Finally, all the 78 motifs detected by MEME and DREME 

were collected and applied to the second subgroup of RCS fragments and the corresponding negative 

control sequences to perform motif enrichment analysis16. For each candidate motif, we compared 

the fraction of RCS fragments that contain this motif to that of the corresponding negative control 

sequences, and used Fisher’s exact test to check whether this motif is significantly over-represented 

in the RCS fragments compared to the negative control sequences (the first column of P-values 

shown in Supplementary Table 8). Besides, we generated another set of random sequences by 

shuffling the sequences of RCS fragments, as they have been found to contain significantly more 

thymine (T) and less cytosine (C) than the negative control sequences, and used them as controls to 

perform a second motif enrichment test with the RCS fragments (the second column of P-values 

shown in Supplementary Table 8). Unfortunately, none of the 78 motifs obtained from de novo motif 

finding showed significant enrichment in both of the two tests. This finding indicates it could be quite 

difficult to find the RNA sequence motifs that can be directly recognized by EZH2, which is consistent 



with the hypothesis suggested by several recent studies that the mechanisms governing PRC2’s RNA 

binding may be very complicated17,18. 

Decomposition of long sequences into K-mers and prediction of PRC2-binding lncRNAs based 

on K-mer frequencies 

To compare with transition based sequence decomposition, traditional K-mer based method was also 

applied to analyze the sequence composition of human lncRNAs. In this approach, the composition 

of a sequence is described by the frequencies of observing all the possible K-mers of length from 1 

to m+1 (here m=5, resulting in a total number of 5460 different K-mers, which can also be visualized 

by a complete quad-tree of height 6). Taking the 5-mer CATGA as an example, the corresponding K-

mer frequency was defined as the frequency of observing it in the given sequence  

۹ െܚ܍ܕ	ܡ܋ܖ܍ܝܙ܍ܚ܎	ሺ۱ۯ۵܂ۯሻ ൌ 	
ሻ࡭ࡳࢀ࡭࡯ሺࡺ

ࡺ െ ࡷ ൅ ૚
																																																																				ሺ૛ሻ 

Here, N(CATGA) is the times of observing 5-mer CATGA in this sequence, and N is the length of this 

sequence. Finally, K-mers significantly under- or over-represented in the sequences of PRC2-positive 

lincRNAs compared to PRC2-negative ones were identified by using the same statistical test and P-

value cutoff as that used for transition frequencies. 

  In main text, we have shown the prediction models based on transition frequencies using the fully 

blind method showed superior accuracies in predicting both human and mouse PRC2-binding 

lncRNAs (Fig. 4A-B), especially for the extremely long lncRNAs. Additionally, we also checked the 

performance of the prediction models built by the non-blind CV method on the moderately long and 

extremely long subgroup of lncRNAs separately, and again got similar results (Supplementary Fig. 

S5A-B), indicating this finding is not specific to the method we chose to build the prediction model. 

Moreover, to control the impact of model complexity, we chose to build prediction models using a 

fixed number of top K-mer or transition frequencies (ranked by the P-value of Welch’s t-test) as 

predictors at each time. Still, a consistent improvement of prediction accuracy on the extremely long 

subgroup of human lncRNAs was observed for the models based on transition frequencies, as 

compared to the K-mer based models using the same number of predictors (Supplementary Fig. S5C, 

here the prediction models were built by the non-blind CV method). 

 In the following part, we use a highly idealized theoretical model to illustrate the difference between 

transition and K-mer based feature selections. Suppose a 6-mer, saying CAGTCT, is the sequence 

feature mediating the interactions between a protein and DNA/RNA sequences. In positive sequences, 

the frequency of observing this K-mer can be expected as 
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. Here we ignored the difference between N and N-K+1 as typically K<<N, and P(Si) is the frequency 

of observing the i-th nucleotide of this 6-mer, and M stands for the extra number of occurrences of 

the 6-mer in each positive sequence as needed for the interaction, which is set to be 0 for negative 

sequences. Thus, its frequency in negative sequences can be expected as 
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. For the transition-based method, we use the last transition CGCGC A  of this 6-mer as an 

example. Its frequency in positive sequences can be expected as 
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, and its frequency in negative sequences can be expected as 
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. For both of the K-mer and the transition based methods, it’s easy to find the frequencies in positive 

and negative sequences can be expressed as C*(1+∆) and C*1, respectively. Here C is a constant 

between two sequence groups. Moreover, we simplify the nucleotide frequencies of A, C, G and T as 

1/4. Then, ∆k-mer and ∆transition can be expressed as 
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This idealized model suggests, when N is a constant for all sequences, the difference in K-mer 

frequencies between positive and negative sequences should be greater than that in transition 

frequencies.  

  For our analysis, however, the problem is that N is quite large and varies dramatically across 

different lncRNAs (100-102 Kb). Specifically, we put the length of 261 human PRC2-binding lncRNAs 

into above formulas and used one-sample Students’ t-test to separately compare ∆k-mer and ∆transition 

with zero (here M is set to be 1 to mimic the most extreme situation). Interestingly, the t-statistics for 

∆k-mer and ∆transition equals to 16.9 and 23.7, respectively, which is opposite from that expected for the 

case with constant N. Besides, protein-DNA interactions usually happen on small sequence 

fragments of length 10-30 base pairs, and they are often associated with clear sequence specificities3. 



However, the interaction between a protein complex and a long RNA molecular may take place at 

multiple loci on this RNA transcript6, as they usually have highly complicated high-order structures, 

and the sequence features associated with such interactions might be quite diffusive on lncRNAs, 

which suggests the sequence composition analysis based on transition frequencies can also be a 

plausible way for lncRNAs. 

Prediction of human PRC2-binding lncRNAs based on the composition of sequences near the 

transcription start site of lncRNA genes 

It has been revealed that PRC2 may preferentially interact with lncRNAs at regions close to their 5’ 

ends19,20. Inspired by these findings, we specifically investigated the sequences close to the 

transcription start site (TSS) of human PRC2-binding lncRNAs. First, we define the TSS region of 

each lncRNA as the region spanning from the TSS to 1kb downstream of the TSS (Supplementary 

Fig. S6A). Then, we applied our sequence composition analysis pipeline to compare the sequences 

extracted from the TSS region of human PRC2-positive and PRC2-negative lncRNAs, and identified 

transitions differentially favored by their TSS regions using the same criteria as the analysis for the 

whole gene bodies, which were then used to build a prediction model of PRC2-binding lncRNAs using 

the fully blind method. In this way, the prediction model using transitions with P-value<0.05 as 

predictors showed a clearly reduced accuracy (AUC=0.57, typically ~250 predictors are used at each 

cross-validation step), compared with the model using only transitions with P-value<0.01 as predictors 

(AUC=0.61, typically ~60 predictors are used), indicating the former one may suffer from overfitting4. 

As a comparison, we also defined the transcription end site (TES) region of each lncRNA as the region 

spanning from 1kb upstream of the TES to the TES (Supplementary Fig. S6A), and applied the same 

analysis to the sequences extracted from the TES region of PRC2-positive and PRC2-negative 

lncRNAs. Interestingly, the prediction model using 56 transitions differentially favored by their TES 

regions (with P-value<0.01) as predictors achieved a slightly lower accuracy (AUC=0.59) than the 

TSS region based model, implying the sequence composition close to the TSS of each lncRNA may 

be more predictive of whether this lncRNA can potentially interact with PRC2 than the other regions. 

To test this hypothesis, we randomly selected 1000 relative positions from [0.1, 0.9] (here the relative 

position 0 and 1 represent the TSS and TES of each lncRNA, respectively, and the relative positions 

out of [0.1, 0.9] were excluded to make the selected positions far enough from TES and TSS). For 

each of these selected positions, we extracted the 1kb sequence around the corresponding position 

of each human lncRNA, and built a prediction model based on the composition of these sequences 

to predict whether the sequence is from a PRC2-positive or negative lncRNA. Interestingly, none of 

the prediction models based on these 1000 randomly selected positions achieved a better accuracy 

than that got by the TSS region based prediction model, while 29 of them achieved higher AUC values 

than that got by the TES region based prediction model (Supplementary Fig. S6B). On the other hand, 

quite a number of these prediction models selected more sequence features as predictors than the 



TSS region based model (Supplementary Fig. S6C). This finding suggests the sequence close to the 

TSS of lncRNAs may be better used to predict whether this lncRNA can potentially interact with PRC2 

than the other parts. Recent studies have suggested that some lncRNAs can interact with multiple 

chromatin modifying complexes at different regions, implying a potential role of these lncRNAs to 

serve as molecular scaffold to link different functional modules together20,21. Then, it’s reasonable to 

speculate that different parts of these lncRNAs may be associated with different functions and, thus, 

have different sequence patterns. However, due to the resolution of the lncRNA annotations used in 

this study, it’s still difficult to reliably address this question. 

 

Supplementary Figure Legends 

Supplementary Figure S1. Consecutively disfavored paths (CDPs) formed by human PRC2-

disfavored transitions and the sequence features associated with transcription factor CTCF’s 

DNA binding. (A) A branch of the complete quad-tree that starts from level 4 and contains a CDP of 

length 2: CCACCA. (B) Summary statistics of the CDPs observed in Fig. 1D, which indicate the 

human PRC2-disfavored transitions have relatively weak preference to connect with each other and 

form CDPs. (C) A representative full-length CFP formed by 6 consecutive transitions that are 

significantly favored by the CTCF-binding DNA sequences identified from human H1 cells compared 

to the sequences not bound by it. These 6 consecutive transitions in together form a 6-mer CCCCCT 

that can be well matched with the binding motif of CTCF obtained from JASPAR database. (D) Box 

plot of the motif scores of all the possible full-length paths extracted from the quad-tree, which start 

from the root and end at each level-6 node. Here the motif score of a path was defined to measure 

the similarity between CTCF’s binding motif and the K-mer formed by all the 6 consecutive transitions 

on this path, and the full-length paths are grouped by the length of the longest CFP found on them. 

 

Supplementary Figure S2. Analysis of the PRC2-favored and disfavored fragments identified 

from human PRC2-binding lncRNAs. (A) AUC value of each of the 10 lncRNA subgroups as the 

testing set. The prediction scores were derived from the prediction model build by the non-blind CV 

(red stars) or the fully blind (blue stars) method. (B-C) AUC value achieved by the empirical 

classification model build by the fully blind (B) or the non-blind CV (C) method with different b. (D) 

Boxplot of EZH2 and SUZ12 fRIP-seq signal intensities at PRC2-favored and disfavored fragments. 

Here the signal intensity of each fragment was measured as the number of reads mapped to it per 

million total reads (RPM) and then averaged over 2 (for EZH2) or 3 (for SUZ12) biological replicates. 

(E) Distribution of the P-values got by using pairwise Students’ t-test to compare the average 

PhastCons conservation scores between the PRC2-favored and disfavored fragments identified from 

each of the 1000 sets of randomized PRC2-positive lncRNAs. Here 1.7% of the randomized lncRNA 



sets achieved P-values lower than 1.7E-04, which is got by using the same test to compare the 

average conservation scores between the PRC2-favored and disfavored fragments identified from 

the original human PRC2-positive lncRNAs as shown in Fig. 2C, and this fraction is used as an 

empirical estimate of the false positive rate (FPR) for the test shown in Fig. 2C. (F) List of three tests 

performed in Fig. 2C-D, together with their empirical P-values and FPR values, which were estimated 

by using the same method as shown in (E). (G-H) Two representative PRC2-positive lncRNA loci, 

including the well-known PRC2-binding lncRNA XIST (G). Their PRC2-favored and disfavored 

fragments are indicated by the red and blue bars, respectively. (I-J) Distribution of PRC2-favored (I) 

and disfavored (J) fragments in human PRC2-positive lncRNAs. Here relative position 0 and 1 

correspond to the 5’ and 3’ end of each lncRNA, respectively. 

 

Supplementary Figure S3. Overlap between human and mouse PRC2-favored and disfavored 

transitions. (A) Venn diagram to show the overlap between human and mouse PRC2-favored and 

disfavored transitions. (B) Scatter plot of the prediction score of each mouse lncRNA obtained from 

the mouse prediction model trained with mouse lncRNAs using the fully blind method and the 

prediction score got from cross-species prediction using the human prediction model trained with 

human lncRNAs. (C) AUC values of three human prediction models in predicting mouse PRC2-

binding lncRNAs. Here the models were trained with human lncRNAs using different groups of 

transitions as predictors, and then applied to mouse lncRNAs. (D) Fraction of mouse PRC2-positive 

and PRC2-negative lncRNAs that contain exactly one and more than one RCSs of EZH2 identified 

from the PAR-CLIP-seq data. (E) Fraction of mouse PRC2-positive and PRC2-negative lncRNAs that 

contain EZH2 RCSs. Here each group of lncRNAs are split into two subgroups of equal size by the 

median of their prediction scores derived from the prediction model trained with mouse PRC2-positive 

and PRC2-negative lncRNAs using the fully blind method, and the P-values were calculated by right-

tailed Fisher’s exact test to measure whether the subgroup of lncRNAs with high prediction scores 

are significantly more likely to contain EZH2 RCS compared to the subgroup with low prediction 

scores. (F) The same analysis as that shown in Fig. 3D. Here we switched to use the 6784 RCSs of 

EZH2 obtained from the GEO webpage of Kaneko et al, which were suggested to be generated with 

more stringent parameters. (G) Cumulative distribution of the local consistency scores of 400 EZH2 

RCSs falling in the 540 mouse lncRNAs used in this study (red curve). Here the local consistency 

score of each RCS was defined as the sum of frequencies of all human PRC2-favored transitions in 

the 500bp sequence fragment centered at the middle of this RCS minus those of all human PRC2-

disfavored ones in this sequence fragment, and each blue dash line represents the cumulative 

distribution of the local consistency scores of the corresponding 500bp random control regions 

selected from the same lncRNAs. In total 100 sets of random control regions were generated. 

 



Supplementary Figure S4. Sequence features of EZH2 RNA contact sites (RCSs) falling in 

lncRNAs. (A) The complete quad-tree of height 6 constituted by all possible transitions of order 0-5 

(placed on level 1-6 accordingly). Left panel shows a building block of the quad-tree, which comprises 

of 4 transitions with the same prefix. Each line represents a transition and the color indicates whether 

the transition is significantly favored or disfavored by the sequences surrounding the EZH2 RCSs 

falling in lncRNAs. (B) Summary statistics of the CFPs observed from the quad-tree shown in (A). The 

empirical P-value is estimated by permutation test and suggests the transitions that are significantly 

favored by EZH2 RCSs strongly prefer to connect with each other and form CFPs. (C) Summary 

statistics of the CDPs observed from the quad-tree shown in (A). The P-value suggests the transitions 

that are significantly disfavored by EZH2 RCSs have a weak preference form CDPs. (D) ROC curve 

and corresponding AUC value of the prediction model built by the fully blind method in predicting 

EZH2 RCS fragments falling in lncRNAs.  

 

Supplementary Figure S5. Compare the performance of prediction models based on K-mer 

and transition frequencies. (A-B) AUC value of the prediction models based on transition (red bars) 

or K-mer (blue bars) frequencies, which were trained and tested by the human (A) and mouse (B) 

lncRNAs, respectively. Here the prediction models were built by the non-blind CV method, and all the 

human/mouse PRC2-positive and PRC2-negative lncRNA were further divided into two subgroups of 

equal size by their length, termed as the moderately long and the extremely long subgroup, to access 

the accuracy of these models on lncRNAs of different length. (C) AUC value of the human prediction 

models on the moderately long and the extremely long subgroup of human lncRNAs, respectively. 

Here the models were built by the non-blind CV method, using a fixed number of top transition or K-

mer frequencies (ranked by the P-value of Welch’s t-test) as predictors. (D) A branch of K-mers cut 

from the quad-tree, which is constituted by all the possible K-mers of length 1-6, from the same 

position as the branch shown in Supplementary Figure 1C. Here the edge color indicates whether the 

K-mer is significantly over-represented (red) or under-represented (green) in CTCF-binding DNA 

sequences compared to the non-binding sequences. 

 

Supplementary Figure S6. Prediction of human PRC2-binding lncRNAs based on the sequence 

in the TSS and TES region of each lncRNA. (A) Definition of the TSS and TES region of each 

lncRNA. (B) AUC values of the prediction models based on the sequences at the TSS/TES region of 

human lncRNAs (red/blue stars, respectively), as well as the prediction models based on sequences 

extracted from 1000 randomly chosen positions of the lncRNAs (blue dots shown in the middle), which 

are used to estimate the empirical P-values for the performance of the TSS and TES region based 

prediction model. (C) Number of sequence features identified from the sequences of TSS and TES 



regions (red/blue stars, respectively), as well as the sequences extracted from 1000 randomly chosen 

positions of the lncRNAs (blue dots shown in the middle). All the sequence features are selected by 

using the same method and P-value cutoff (0.01). 

 

Supplementary Table S1. Distribution of human PRC2-disfavored transitions on each level of 

the quad-tree. 

Level Count [Q1, Q3] P value 

1 0 [0, 0] 1 

2 0 [0, 0] 1 

3 1 [0, 1] 0.40 

4 4 [2, 7] 0.49 

5 14 [16, 29] 0.86 

6 68 [84, 111] 0.97 

All 87 [103, 146] 0.94 

 

Supplementary Table S2. Summary statistics of using two-sample Welch t-test to compare the 

frequencies of each transition between human PRC2-positive and PRC2-negative lncRNAs.  

Supplementary Table S3. List of the human lncRNAs used in this study and their prediction scores 

obtained from the prediction models built by the non-blind CV and the fully blind method (based on 

hg18 genome assembly). 

Supplementary Table S4. List of the PRC2-favored and disfavored fragment of each human PRC2-

binding lncRNA (based on hg18 genome assembly). 

Supplementary Table S5. Summary statistics of using two-sample Welch t-test to compare the 

frequencies of each transition between mouse PRC2-positive and PRC2-negative lncRNAs.  



Supplementary Table S6. List of the mouse lncRNAs used in this study and their prediction scores 

obtained from the prediction models built by the non-blind CV and the fully blind method (based on 

mm9 genome assembly). 

Supplementary Table S7. Summary statistics of using two-sample Welch t-test to compare the 

frequencies of each transition between the EZH2 RCS fragments falling in lncRNAs and the 

corresponding negative control sequences. 

Supplementary Table S8. List of motifs detected by de novo motif discovery from the EZH2 RCS 

fragments as well as their relative enrichment in EZH2 RCS fragments compared to two sets of 

control sequences generated by different methods. 
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