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Quantitative integration of epigenomic
variation and transcription factor binding
using MAmotif toolkit identifies an
important role of IRF2 as transcription
activator at gene promoters
Hongduo Sun1,2, Jiawei Wang3, Zhaohui Gong1, Jiaying Yao1,2, Yuangao Wang1, Jian Xu 4, Guo-cheng Yuan5,6,
Yijing Zhang3 and Zhen Shao1

Dear Editor,
Eukaryotic gene transcription is controlled by a large

cohort of chromatin-associated proteins including tran-
scription factors (TFs) and epigenetic regulators1,2. ChIP-
seq experiments are now widely used to characterize the
genome-wide binding of these proteins, and comparing
ChIP-seq data from different cell types can provide
valuable insight into understanding how cell type-specific
transcriptional programs are established3. Specifically,
epigenetic regulators often show dynamic chromatin
binding during development and disease progressions2.
However, most of them are broadly expressed across tis-
sues, and their chromatin binding is thought to be mainly
modulated by crosstalk with TFs, which could be con-
sidered as their cell type-specific co-factors4. Thus, iden-
tifying TFs that preferentially bind at the genomic regions
differentially bound by a chromatin-associated protein
between different cell types has become an important step
toward deciphering the molecular mechanism modulating
its chromatin binding4. Moreover, applying this analysis
to histone modifications marking active regulatory

elements such as H3K4me1-3 and H3K27ac is frequently
used for discovering cell type-specific regulators5.
A traditional way of this analysis is to first detect the cell

type-specific ChIP-seq peaks of the protein of interest,
which are typically defined as those that do not overlap
with peaks identified from other cell types, and then
search for TFs whose binding sites are significantly over-
represented in these peaks6. But, the cell type-specific
peaks defined in this way often suffer from high false-
positive rates, which can severely affect the accuracy of
downstream analysis6,7. Recently, it has been demon-
strated that quantitative comparison of ChIP-seq data
using MAnorm or other statistical models can more
precisely characterize the differential binding of proteins
than arbitrarily classifying their peaks into cell type-
specific and non-specific ones based on peak overlap,
and thus can provide a better basis for the following
analysis6–8. This is particularly important for identifying
the cell type-specific co-factors of the protein under study,
which highly relies on both the sensitivity and specificity
of the detection of differential binding6. Therefore,
developing computational tools that systematically
incorporate quantitative comparison of ChIP-seq data
based on appropriate statistical models into the identifi-
cation of cell-type specific regulators can effectively
facilitate the application of these models.
Here, we present a practical toolkit, MAmotif, for this

purpose. It can automatically perform quantitative com-
parison between ChIP-seq samples of the same protein
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Fig. 1 (See legend on next page.)
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but from different cell types, and identify TFs whose
binding is significantly associated with the cell type-biased
binding of this protein as its candidate co-factors (Fig. 1a).
To assess its performance, we re-analyzed the ChIP-seq
data of H3K4me3, a histone mark of active promoters,
from adult and fetal human pro-erythroblast cells
(proEs)9. More than 97% of the H3K4me3-associated
genes (defined as genes with H3K4me3 peaks at pro-
moters) are shared between adult and fetal stages, cov-
ering 93% of the genes differentially expressed between
two stages (Supplementary Fig. S2a). However, using
MAnorm model, we still identified hundreds of different
H3K4me3 peaks at gene promoters, and the associated
genes also tend to be differentially expressed (Supple-
mentary Fig. S2b-d), indicating that the H3K4me3 levels
at these genes are fine-tuned. Subsequently, we applied
both MAmotif and traditional overlap-based approach to
compare the ChIP-seq data. Interestingly, MAmotif
identified IRF family motifs as the top candidate co-
factors associated with adult-biased H3K4me3 peaks at
gene promoters, while traditional overlap-based method
ranked GATA2 motif as the most significant one (Fig. 1b).
Of note, it has been validated that IRF2 can function as
transcription activator at adult-specific enhancers9. Given
that a significant fraction (19%) of IRF2 ChIP-seq peaks in
adult proEs are located at gene promoters, we speculate
IRF2’s promoter binding may also be important for
adult proEs.
Next, we incorporated the gene expression profiles of

adult and fetal proEs to test these predictions. The
rationale is that if a TF does preferentially bind at the
adult-biased H3K4me3 peaks, genes bound by it at pro-
moters should be more likely to have adult-biased
expression than other H3K4me3-associated genes, as
H3K4me3 is a strong transcriptional activation mark2. By
taking all 14,108 H3K4me3-associated genes of adult
proEs as background, we found genes covered by the
H3K4me3 promoter peaks containing IRF family motifs

are significantly enriched in genes more highly expressed
in adult proEs than fetal proEs (named as adult-high
genes hereafter, Supplementary Fig. S2e and Fig. 1c) and
depleted of genes more highly expressed in fetal proEs
(named as fetal-high genes, Supplementary Fig. S2f). We
repeated the analysis with IRF2 ChIP-seq peaks of adult
proEs and observed a more significant enrichment
(Fig. 1c–e). Moreover, we included the gene expression
changes upon shRNA-mediated knockdown of IRF2 in
adult proEs9. Strikingly, a significantly higher fraction of
the genes downregulated after IRF2 knockdown (named
as IRF2-activated genes) were covered by the H3K4me3
promoter peaks co-occupied by IRF2 than expected by
chance (Fig. 1f), indicating that IRF2’s promoter binding is
linked with transcriptional activation of downstream
genes. On the other hand, the presence of GATA2 motif
at H3K4me3 promoter peaks failed to show any sig-
nificant association with adult-biased gene expression
(Fig. 1c). Then, we defined stage-biased H3K4me3 peaks
based on the log2-ratios of H3K4me3 intensities and
corresponding P-values, and confirmed that the IRF2
motif, but not GATA2 motif, is significantly enriched in
adult-biased H3K4me3 promoter peaks compared to the
fetal-biased ones (Supplementary Fig. S2g-h), especially in
those adult-biased peaks co-localized with IRF2 peaks
(Supplementary Fig. S2i). This is consistent with the
previous finding that GATA TFs regulate erythropoiesis
at both stages10.
We have shown that besides distal enhancers, IRF2 can

also function as transcription activator at gene promoters.
However, only a small fraction of IRF2 promoter-bound
genes overlap with the genes associated with IRF2-bound
enhancers (Fig. 1g), though the vast majority of these
genes have active promoters in adult proEs (marked by
H3K4me3 but not by repressive mark H3K27me3). Next,
by using all the active promoter genes as background, we
confirmed IRF2’s binding at promoter and enhancer
regions is regulating different pathways in adult proEs.

(see figure on previous page)
Fig. 1 Using MAmotif to compare the H3K4me3 ChIP-seq data of adult and fetal proEs. a The overall workflow of MAmotif toolkit for
comparing two ChIP-seq samples of the same chromatin-associated protein but from different cell types (a detailed introduction of the workflow and
implementation of MAmotif toolkit and its Motif-Scan module can be found in Supplementary information and Supplementary Fig. S1b-f). Of note,
MAmotif can also utilize TF binding information from other resources such as ChIP-seq data, instead of the TF binding motifs detected by its Motif-
Scan module. b The top JASPAR motifs predicted by MAmotif and traditional overlap-based approach that are significantly associated with the adult-
biased H3K4me3 promoter peaks compared to fetal proEs. c The overlap between adult-high genes and genes covered by the H3K4me3 promoter
peaks of adult proEs that contain IRF1/2, MYB, GATA2 motifs, and IRF2 ChIP-seq peaks of adult proEs, respectively. d Fractions of adult-biased, fetal-
biased, and unbiased H3K4me3-associated genes that have IRF2 peaks at their promoters. e Fractions of adult and fetal-high genes that have IRF2
peaks at promoters. Here the P-values shown in d and e were calculated by two-tailed Fisher’s exact test using hypergeometric distribution. f The
overlap between IRF2-activated genes (genes downregulated after IRF2 knockdown in adult proEs) and genes covered by the H3K4me3 promoter
peaks of adult proEs that contain IRF1/2, MYB motifs, and IRF2 ChIP-seq peaks, respectively. g Venn diagram shows the overlap between the genes
with active promoters in adult proEs (covered by H3K4me3 peaks and not by H3K27me3 peaks, a repressive histone mark) and the IRF2 promoter/
enhancer-bound genes of adult proEs. h Gene ontology (GO) enrichment analysis of the IRF2 promoter-bound genes in adult proEs. Here, all the
active promoter genes of adult proEs were used as background and P-values were corrected by the Benjamini–Hochberg procedure for multiple
testing
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More specifically, the IRF2 promoter-bound genes are
highly enriched in immune and viral response pathways
(Fig. 1h), while genes bound by IRF2 at enhancers are
more closely related with basic cellular functions such as
RNA transcription and protein phosphorylation (Supple-
mentary Fig. S2j). It should be noted that immune path-
ways comprise one of the key differences between adult
and fetal proEs at transcriptome level, but the molecular
mechanism has not yet been deciphered9. With our new
analysis, now it is clear that IRF2 preferentially regulates a
considerable number of immune-related genes by directly
binding at their promoters, and these genes tend to be
more highly expressed in adult proEs (Supplementary
Fig. S2k), suggesting that it plays an important role of
transcriptional activation at promoters.
In summary, we present a new computational toolkit,

MAmotif, for detecting co-factors associated with the
differential chromatin binding of proteins, based on
quantitative comparison of their ChIP-seq data and sys-
tematic integration with TF binding information from
motif analysis or other resources. Applying it to real
ChIP-seq data, we unveiled an important role of IRF2 as
transcription activator at gene promoters through coupling
with H3K4me3 mark, which clearly illustrates the power of
quantitative integration of epigenomic variation and TF
binding information at regulatory elements using MAmotif
for detecting cell type-specific regulators. MAmotif toolkit
is available at https://github.com/shao-lab/.
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Quantitative integration of epigenomic variation and transcription factor binding 

using MAmotif toolkit identifies an important role of IRF2 as transcription activator 

at gene promoters 

 

Supplementary information 

Public data and web tools used in this study 

The raw ChIP-seq data and detected peaks of histone modification H3K27ac and related TFs in 

H1 human embryonic stem cells (hESCs), K562 human leukemia cells and human embryonic 

kidney HEK293 cells were obtained from ENCODE website (http://genome.ucsc.edu/ENCODE/). 

In this study, we used the position weight matrixes (PWMs) of all the 198 vertebrate TF binding 

motifs downloaded from JASPAR database in 2014 [1]. ChIP-seq data of histone modification 

H3K4me3 and TF IRF2 in adult and fetal proEs as well as the gene expression data were 

obtained from Xu et al [2]. From Cistrome Data Browser website, 6092 sets of human TF binding 

peaks from public ChIP-seq data were downloaded [3]. Gene ontology (GO) analysis was 

performed using DAVID website with default parameters [4]. RefSeq gene annotations of human 

genome assembly hg18 were downloaded from UCSC genome browser, and the promoter of 

each gene was defined as the region from 2 kb upstream to 2 kb downstream of its annotated 

transcriptional start site (TSS). The Fisher’s exact tests were performed using R software to 

calculate P-values based the hypergeometric distribution, and fold enrichment of the overlap 

between two gene sets was defined as the ratio between the number of overlapped genes and 

that expected by chance. 

 

MAmotif uses quantitative comparison of ChIP-seq data to detect co-factors associated 

with the differential binding 



MAmotif is used to quantitatively compare two ChIP-seq samples of the same protein but from 

different cell types (or conditions) and identify co-factors associated with the cell type-biased 

binding of this protein using the binding information of candidate TFs obtained from motif 

analysis (or other resources such as ChIP-chip/seq data). In MAmotif, we switch to use the 

log2-ratio of ChIP-seq intensities between two samples at each peak, i.e. the M value calculated 

by MAnorm model [5], to quantitatively represent the cell type specificity of this peak. This is 

mainly due to two reasons. First, when comparing ChIP-seq samples from different cell types, it 

was frequently found that the cell type specificity of peaks cannot be precisely characterized by 

simply classifying them into cell type-specific and non-specific ones by whether or not they 

overlap with peaks identified from other cell types [5-7], especially when the ChIP-seq samples 

are from two closely related cell types or conditions [2]. On this account, it has been suggested to 

better describe the binding changes in a quantitative way [5, 7]. Second, it was also found that 

genomic regions with greater chromatin state changes across cell types usually are more likely 

to be directly co-occupied by key cell type-specific regulators [8]. As an example, we applied 

MAnorm to compare the ChIP-seq data of H3K27ac, a histone mark of active gene promoters 

and distal enhancers, between H1 hESCs and K562 cells. After ranking all the H3K27ac peaks 

by their log2-ratios of ChIP-seq intensities between two cell types, it can be clearly viewed that 

peaks with higher hESC-biased H3K27ac levels are more likely to contain ChIP-seq peaks of 

hESC-specific regulators POU5F1, SOX2 and NANOG, while peaks with higher K562-biased 

H3K27ac levels are more likely to be co-occupied by K562-specific regulators TAL1 and GATA1 

(Supplementary Fig. S1a). To test whether we can reproduce this observation with motif analysis, 

we scanned all the H3K27ac peaks of two cell types with the vertebrate TF binding motifs 

downloaded from JASPAR database [1] using our Motif-Scan toolkit (a detailed description of 

this toolkit can be found in the following sections), which has been successfully tested in our 

previous studies [2, 5, 9-11]. Consistently, we found H3K27ac peaks with greater ChIP-seq 

intensity changes showed a higher enrichment of corresponding cell type-specific regulators’ 



binding motifs (Supplementary Fig. S1e), which in turn could also support the effectiveness of 

Motif-Scan toolkit in predicting TF binding sites. On the other hand, for each motif, we 

systematically classified the H3K27ac peaks identified from each cell type into motif-present and 

motif-absent ones, based on whether or not they were detected to contain this motif in their 

sequences by Motif-Scan. Interestingly, it could be easily found that peaks having the binding 

motifs of POU5F1, SOX2, TAL1 and GATA1 exhibited obviously greater changes of H3K27ac 

levels than the corresponding motif-absent peaks (Supplementary Fig. S1f). Meanwhile, peaks 

with the binding motifs of SPZ1 and HNF4G, two TFs that haven’t been reported to have clear 

functional selectivity between two cell types, failed to show significantly different levels of 

H3K27ac changes compared to the other peaks (Supplementary Fig. S1f). Taken together, these 

analyses not only validated the power of quantitative comparison on ChIP-seq data, but also 

shed light on how to utilize the quantitative measure of ChIP-seq intensity changes. 

Based on these observations, we combine MAnorm and Motif-scan as two basic functional 

modules of MAmotif, and incorporate a new integration module to examine the association 

between the quantitative changes of ChIP-seq intensities calculated by MAnorm and the 

occurrences of each TF binding motif detected by Motif-Scan. The significance of this 

association could be used to infer whether the corresponding TF can be a candidate cell 

type-specific co-factor accounting for the cell type-biased binding detected between the two 

ChIP-seq samples under comparison. Here we briefly describe its workflow (Figure 1). First, it 

takes the coordinates of the peaks and aligned reads of two ChIP-seq samples as main input, 

together with the TF binding motifs chosen for motif analysis. Then, the input data are 

automatically processed by MAnorm and Motif-Scan modules, to get the log2-ratio of normalized 

ChIP-seq read densities as well as the occurrences of all input motifs at each peak region. 

Subsequently, they are sent to the integration module, and two statistical tests are applied to 

assess the association between the ChIP-seq intensity changes and the occurrence of each 

input motif (right panel of Figure 1a), by checking whether the peaks having this motif (named as 



motif-present peaks) show significantly higher ChIP-seq intensity changes between two 

ChIP-seq samples than peaks with no motif occurrence (named as motif-absent peaks). If a motif 

passes both tests, which means the motif-present peaks of this motif are significantly more likely 

to have cell type-biased binding than the motif-absent peaks, this motif (i.e. the corresponding TF) 

will be reported as a candidate cell type-specific co-factor. 

 

Introduction of the workflow and implementation of MAmotif toolkit 

MAmotif takes four bed files describing the coordinates of all predefined peaks and aligned reads 

of two ChIP-seq samples as the main input. Besides, it also needs the gene annotation file of the 

corresponding genome assembly and fasta files of genome sequences, as well as a text file 

containing the PWMs of all candidate motifs as input for motif analysis. Of note, users can use 

the processed motif data for the motifs in JASPAR database (including the PWM of each motif 

and the motif score cutoffs corresponding to difference significance levels), which can be found 

on the webpage of Motif-Scan, to directly run a MAmotif analysis. 

MAmotif starts from processing the input peak and read information of two ChIP-seq samples 

using MAnorm module to calculate the log2-ratio of normalized ChIP-seq intensities 

(represented by the ChIP-seq read densities) at each peak region (extended/truncated to the 

same length from peak summit, and here this length is set to be 2kb for H3K27ac and H3K4me3 

as suggested for histone modifications with sharp peaks). Meanwhile, the DNA sequence of 

each peak region is extracted and scanned by the Motif-Scan module with input motifs, to detect 

the occurrence of each candidate motif in the sequence with motif score higher than the cutoff 

specified by the user. Here the length of peak region for motif scanning is set to be 1 kb as 

suggested. Next, the log2-ratios of ChIP-seq intensities calculated by MAnorm and the 

occurrences of each candidate motif detected by Motif-Scan are combined in the integration 

module. For each motif, all the peaks identified from one cell type, e.g. cell type A, are 

systematically classified into motif-present and motif-absent ones, based on whether or not it is 



found to contain at least one occurrence of this motif. Here users can choose to exclude the 

motifs being present in a very large fraction of peaks (e.g. >50%), which usually are motifs with 

low information content and may introduce a lot of false positives. Then, two statistical tests, 

including the Students’ t-test and Mann–Whitney–Wilcoxon (MWW) rank-sum test, are applied to 

test whether the motif-present peaks generally have higher log2-ratios of ChIP-seq intensities 

(the ratios are calculated as cell type A/B) than motif-absent ones. Finally, the P-values of the 

two tests are corrected for multiple testing using the Benjamini–Hochberg approach, and the less 

significant one is used to rank the candidate motifs. Of note, MAmotif provides an option to 

separate promoter and non-promoter peaks based on input gene annotations before doing the 

statistical tests, since it was often found that the cell type-biased binding of many 

chromatin-associated proteins, especially the histone modifications, may be associated with 

different co-factors at gene promoter and distal regions. Besides, MAmotif can also be used to 

compared DNase-seq and ATAC-seq data and identify candidate TFs associated with the cell 

type-biased open chromatin sites. 

Currently MAmotif is written in Python. The stand-alone version of all its three main functional 

modules are also provided. Their source codes and user manuals can be found at 

https://github.com/shao-lab/ and http://bioinfo.sibs.ac.cn/shaolab/opendata.php. 

 

Workflow of the Motif-Scan toolkit embedded in MAmotif 

Motif-Scan is a computational toolkit designed to scan input genomic regions with known DNA 

motifs, and check whether any of the motifs are significantly over- or under-represented in input 

genomic regions compared to the control regions randomly selected from the genome 

(Supplementary Fig. S1b), or compared to another set of genomic regions provided by the user 

as controls (this option can be used to identify motifs differentially enriched in two groups of 

genomic regions, e.g. the unique peaks identified from two ChIP/DNase/ATAC-seq samples). 

Motif-Scan takes a set of genomic regions (or two sets of genomic regions to perform differential 

https://github.com/shao-lab/
http://bioinfo.sibs.ac.cn/shaolab/opendata.php


enrichment analysis), the DNA motifs of interest, as well as the fasta file of each individual 

chromosome’s DNA sequence and the gene annotation file of the corresponding genome 

assembly as input. If the input genomic regions are ChIP/DNase/ATAC-seq peaks, we suggest 

to truncate/extend them to the same length (from peak center by default, or from peak summit if 

available) before doing motif scanning, in order to make the number of a motif’s occurrences 

comparable across different peaks. Here the length for motif scanning can be customized by the 

users (otherwise they can choose to scan the entire input regions without any 

truncation/extension), which is suggested to be 1 kb for DNase/ATAC-seq peaks and ChIP-seq 

peaks of TFs and histone modifications with sharp peaks. If the user did not provide any control 

regions, Motif-Scan will select a set of random control regions from the genome for each input 

region (typically the number is set to be 5), with controlling the distance to the nearest gene’s 

TSS to be the same as the input region (unless it is far from known genes’ TSSs, e.g. with a 

distance to the nearest gene’s TSS >10kb). In this way, the random control regions can be 

assumed to have a similar sequence background to the input regions, as gene promoters often 

have high GC content and are rich of TF binding motifs. 

After extracting the genome sequences of all the input and control regions, for each motif 

Motif-Scan uses a sliding window with the same length of the motif to scan the sequences at a 

step size of 1 base pair (bp). At each step, a motif score is calculated to represent the similarity 

between the sequence fragment in the window and the motif (Supplementary Fig. S1c), which 

equals to 1 if the sequence fragment is right the best match of the motif, given the genome 

background nucleotide frequencies [5, 10]. Then, the motif score is compared with the genome 

background motif score distribution of this motif, which is generated from 5*106 sequence 

fragments randomly sampled from the genome, and the sequence fragment will be labeled as a 

significant match of the motif if its motif score is higher than the cutoff specified by user. Here we 

suggest to use the motif score cutoff corresponding to a certain significance level, e.g. P-value 

0.0001 based on the genome background motif score distribution. It means that among 10000 



random sequence fragments, it’s expected to have at most one sequence fragment with motif 

score higher than this cutoff. Besides providing the users with a script to model the background 

motif score distribution in a specific genome with their own motifs, we also compiled the motif 

score cutoffs corresponding to difference significance levels for the TF-binding motifs obtained 

from JASPAR database [1, 12] in several frequently used genomes (such as human and mouse). 

In this way, the users can use these motif annotation files to directly perform motif scanning with 

all JASPAR motifs. 

When motif scanning is done, several statistics will be calculated for each motif to represent its 

enrichment/depletion in input genomic regions as compared to the control regions: 1) fold 

enrichment calculated as the ratio between the fraction of input regions having this motif and that 

of control regions, with the value higher/lower than 1 indicating the motif is 

over/under-represented (enriched/depleted) in input regions, respectively; 2) a P-value 

calculated based on hyper-geometric distribution to represent whether the enrichment/depletion 

is of statistical significance.  

Since Motif-Scan is mainly developed for performing motif analysis on peaks identified from 

ChIP/DNase/ATAC-seq data, it will additionally output several figures to visualize the enrichment 

and also the distribution of motif occurrences in the input regions (Supplementary Fig. S1d). 

They can help users to assess the association between a motif’s occurrence and the 

ChIP/DNase/ATAC-seq signal intensities at peak regions. This analysis can be further used to 

infer the data quality if the association is well established. For example, the occurrence of a TF’s 

binding motif typically is positively correlated with the ChIP-Seq intensities at its ChIP-Seq peaks. 

More specifically, peaks with stronger ChIP-seq intensities are more likely to contain its binding 

motifs (as shown in the left panels of Supplementary Fig. S1d), and within each peak, its binding 

motif is also more likely to be observed at the peak summit compared to flanking regions (as 

shown in the right panels of Supplementary Fig. S1d). 

 



MAmotif can also utilize TF binding information from available ChIP-chip/seq data 

Inspired by the analysis with IRF2 ChIP-seq peaks, we additionally provide a function in MAmotif 

toolkit to utilize TF binding information obtained from other resources, such as peaks of 

ChIP-chip/seq samples, to test the association between each candidate TF’s binding and the 

ChIP-seq signal changes detected from the samples under comparison. To validate the 

effectiveness of this approach, we repeated the MAmotif analysis with all the human TF 

ChIP-seq peaks downloaded from Cistrome Data Browser [3], instead of the occurrences of 

JASPAR motifs detected by Motif-Scan. Consistently, we found only the IRF2 ChIP-seq peaks of 

adult proEs exhibited significant association with adult-biased H3K4me3 promoter peaks 

(P-value=3e-5). This finding not only validates the reproducibility of our prediction based on motif 

analysis, but also suggests this additional function of MAmotif can provide a valuable approach 

to reuse the huge amount of public ChIP-seq data. 

 

Traditional overlap-based approach used in this study to detect co-factors associated the 

differential H3K4me3 peaks between adult and fetal proEs 

In this study, the traditional overlap-based approach was also used to compare the H3K4me3 

ChIP-seq data of adult and fetal proEs and identify co-factors associated with adult-specific 

H3K4me3 promoter peaks. First, adult-specific H3K4me3 peaks were defined as the H3K4me3 

peaks of adult proEs that do not overlap with any H3K4me3 peak detected in fetal proEs, and the 

other H3K4me3 peaks of adult proEs were named as non-specific peaks. Then, Motif-Scan was 

applied to scan the adult-specific and non-specific H3K4me3 promoter peaks with the same 

parameters as those used in MAmotif analysis, and a P-value was calculated for each motif 

based on hypergeometric distribution to represent its differential enrichment between 

adult-specific H3K4me3 promoter peaks and the non-specific peaks, which was used to finally 

select the top candidate motifs. 

 



Analysis of IRF2’s binding at the differential H3K4me3 peaks defined by MAnorm 

To more clearly illustrate the association between IRF2’s binding and the H3K4me3 promoter 

peaks with stage-biased H3K4me3 levels, here we further defined stage-biased H3K4me3 peaks 

based on the quantitative comparison of H3K4me3 ChIP-seq data between adult and fetal proEs 

using MAnorm. Here, adult and fetal-biased H3K4me3 peaks were defined as the H3K4me3 

peaks identified from adult and fetal proEs with fold change of H3K4me3 ChIP-seq intensities 

higher than 1.5 between adult and fetal proEs and P-value lower than 0.05, and unbiased 

H3K4me3 peaks were defined as the H3K4me3 peaks with fold change of H3K4me3 ChIP-seq 

intensities lower than 1.5. It can be seen that a significantly higher fraction of adult-biased 

H3K4me3 promoter peaks were detected to contain IRF2 motifs by Motif-Scan compared to 

fetal-biased and unbiased H3K4me3 promoter peaks (Supplementary Fig. S2g), while the 

GATA2 motif was not found to be significantly more enriched in adult-biased H3K4me3 promoter 

peaks compared to fetal-biased ones (Supplementary Fig. S2h). These findings can directly 

support the predictions by MAmotif as shown in Figure 1b. Then, we named the adult-biased 

H3K4me3 promoter peaks that are detected to contain IRF2 motifs as IRF2-motif-present 

adult-biased H3K4me3 promoter peaks, and the others as IRF2-motif-absent adult-biased 

H3K4me3 promoter peaks. It could be found that the IRF2-motif-present adult-biased H3K4me3 

promoter peaks are much more likely to directly co-localize with the IRF2 ChIP-seq peaks of 

adult proEs than IRF2-motif-absent adult-biased H3K4me3 promoter peaks (Supplementary Fig. 

S2i), suggesting IRF2’s binding at adult-biased H3K4me3 promoter peaks is largely mediated by 

it’s known binding motif. 

Next, we defined the adult and fetal-biased H3K4me3-associated genes as genes with adult 

and fetal-biased H3K4me3 peaks at promoters, respectively, and the unbiased 

H3K4me3-associated genes as genes that only have unbiased H3K4me3 peaks at their 

promoters. Consistently, we found a much higher fraction of adult-biased H3K4me3-associated 

genes are directly bound by IRF2 at promoters in adult proEs than that of fetal-biased 



H3K4me3-associated genes (Figure 1d). Besides, the adult-high genes are also found to be 

more likely to have IRF2 ChIP-seq peaks at their promoters in adult proEs compared to those 

fetal-high genes. These findings clearly indicate that IRF2 preferentially binds at the promoters of 

genes with adult biased promoter H3K4me3 and expression levels, as predicted by MAmotif. 

 

Association between IRF2’s binding and other histone modifications at gene promoters 

We additionally checked the association between IRF2 and adult-biased H3K4me1 and 

H3K27ac peaks at gene promoters. First, we applied MAnorm to re-analyze the ChIP-seq data of 

H3K4me1 and H3K27ac in adult and fetal proEs, and defined the adult/fetal-biased H3K4me1 

and H3K27ac peaks as those with fold change of ChIP-seq intensities higher than 1.5 and 

P-value lower than 0.05. Interestingly, the fraction of adult-biased H3K27ac and H3K4me1 

promoter peaks with the presence of IRF2 motif was not found to be significantly higher than that 

of other H3K27ac and H3K4me1 peaks (Supplementary Fig. S3a-b). Consistently, the fraction of 

adult-biased H3K27ac/H3K4me1-associated genes co-occupied by IRF2 ChIP-Seq peaks at 

promoters were also not found to be significantly higher than that of other 

H3K27ac/H3K4me1-associated genes (Supplementary Fig. S3c-d). Besides, we also tried 

mapping the IRF2 peaks located at annotated gene promoters to the second nearest genes of 

them, and found these genes showed a much weaker enrichment in the adult-high genes 

(Supplementary Fig. S3e). Especially, these genes failed to show any significant enrichment in 

the IRF2-activated genes (Supplementary Fig. S3f), suggesting IRF2’s promoter binding mainly 

regulates the activity of immediate downstream genes. 

 

Discussion of the performance of different approaches in identifying differential peaks 

between ChIP-seq samples and detecting co-factors associated with differential binding  

In the comparison of H3K4me3 ChIP-seq data between adult and fetal proEs, 97% of the 

H3K4me3-associated genes are shared between two stages, covering more than 90% of the 



differentially expressed genes (Supplementary Fig. S2a). However, by using MAnorm to perform 

a quantitative comparison of ChIP-seq data, we still found many genes have stage-biased 

H3K4me3 levels at their promoters, and the changes of their H3K4me3 levels obviously are 

correlated with their expression changes (Supplementary Fig. S2b-d). Thus, it’s reasonable to 

find that traditional overlap-based analysis did not achieve a plausible performance in identifying 

co-factors associated with the differential H3K4me3 promoter peaks, as most of the real 

differential peaks were actually missed by this approach.  

But, this finding does not mean the traditional overlap-based approach is useless. When 

applied to compare more distinct cell types, it may have an improved performance. Here we 

again use the comparison of H3K27ac ChIP-seq data between H1 hESCs and K562 cells as an 

example. The majority of the H3K27ac peaks of two cell types were labeled as cell type-specific 

ones based on peak overlap [5], leading to a large number of cell type-specific 

H3K27ac-associated genes (genes having H3K27ac peaks at their promoters). These genes 

cover a substantial part of the genes differentially expressed between two cell types 

(Supplementary Fig. S4a). After using MAnorm to compare the two ChIP-seq samples, it can be 

easily seen that both the promoter H3K27ac level and the expression level of the cell 

type-specific H3K27ac-associated genes change dramatically between two cell types 

(Supplementary Fig. S4c). Then, we applied both traditional overlap-based approach and 

MAmotif to identify the co-factors associated with H1-specific/biased H3K27ac peaks. 

Interestingly, the top 5 JASPAR motifs detected by traditional overlap-based approach are 

exactly the same as those predicted by MAmotif (some of them may have different ranks, 

Supplementary Fig. S4d), which cover several known pluripotency related TFs including Pou5f1, 

TCF3 and Sox family motifs (its family member Sox2 is widely known as a core pluripotency TF). 

This finding indicates that when most of the cell type-specific peaks (or associated genes) 

defined by overlapping analysis are true differential peaks, they can still be used as the basis for 

the following analysis (but as suggested in our previous studies [2, 5], we recommend to use a 



quantitative/statistical comparison of the corresponding ChIP-seq samples to validate the 

definition of differential and non-differential peaks from overlapping analysis and/or further filter 

out those unreliable ones, in order to achieve a better performance).  

In some recent studies, DESeq and DESeq2 [13, 14], which were originally developed for 

differential expression analysis of RNA-seq data, were also used to perform differential binding 

analysis with ChIP-seq data of histone modifications. Here we also tried using DEseq2 and 

MEME [15], a very famous motif analysis suite, to re-perform the comparison of H3K4me3 

ChIP-seq data between adult and fetal proEs. First, we found DEseq2 failed to detect any 

H3K4me3 peak with significant ChIP-seq intensity change using P<0.01 as cutoff 

(Supplementary Fig. S5b), while MAnorm can still detect more than two thousand differential 

H3K4me3 peaks with the same cutoff, and several hundred of them are located at gene 

promoters, covering a considerable fraction of genes differentially expressed between adult and 

fetal proEs (Supplementary Fig. S5b). Then, we switched to use a less stringent cutoff P-value 

0.05 as cutoff, and obtained 86/119 adult/fetal-biased H3K4me3 promoter peaks from DEseq2, 

respectively. We applied the AME tool in MEME suite to analyze the relative enrichment of the 

196 JASPAR vertebrate motifs used in our study between the adult and fetal-biased H3K4me3 

promoter peaks detected by DEseq2, and none of these motifs were found to be significantly 

more enriched in adult-biased H3K4me3 promoter peaks compared to the fetal-biased ones 

(P<0.01 after correction for multiple testing). On the other hand, AME found IRF family motifs are 

significantly over-represented in the adult-biased H3K4me3 promoter peaks detected by 

MAnorm compared to the corresponding fetal-biased peaks (P=2E-7 for IRF2 motif), indicating 

AME has the ability to detect motifs truly associated with adult-biased H3K4me3 peaks and our 

finding can be reproduced by other motif analysis tools. 

Of note, the developers of DEseq and DEseq2 have claimed they were originally designed to 

compare RNA-seq data with biological replicates, so it’s not too surprising to find they do not 

have a good performance on the ChIP-seq data used in this study. Besides, it has been 



mentioned that it’s better to use computational tools specifically designed for ChIP-seq data to 

perform differential binding analysis [16]. For example, the signal-to-noise (S/N) ratio can vary 

dramatically across ChIP-seq samples, and it could be an important issue for the comparison of 

ChIP-seq data. Here, we still use the comparison of H3K27ac ChIP-seq data between H1 hESCs 

and K562 cells as an example. We applied both DEseq2 and MAnorm to compare the H3K27ac 

ChIP-seq data, and found DEseq identified significantly more H1-biased H3K27ac peaks than 

K562-biased ones (2669 vs 357, Supplementary Fig. S5e) using fold change higher than 2 and 

P-value lower than 0.01 as cutoffs, while the numbers of the H1-biased and K562-biased 

H3K27ac peaks detected by MAnorm are still quite comparable with each other (15572 vs 13562, 

Supplementary Fig. S5e), covering a much higher proportion of the genes differentially 

expressed between H1 and K562 cells (38.6% and 54.1% of H1 and K562-high genes, 

respectively, compared to 0.7% and 0.1% by DEseq2, Supplementary Fig. S5e). Interestingly, 

we previously found that DEseq2 detected similar numbers of adult and fetal-biased H3K4me3 

peaks between adult and fetal proEs. Then, we used the fraction of aligned reads covered by the 

top 15,000 peaks as a simple estimation of the S/N ratio of each ChIP-seq sample, and found the 

H3K27ac ChIP-seq samples of H1 and K562 cells do have quite different S/N ratios, while the 

H3K4me3 samples of adult and fetal proEs showed similar S/N ratios with each other 

(Supplementary Fig. S5f), indicating the unbalanced numbers of the differential peaks detected 

by DEseq are very likely to be due to the variation of S/N ratio between these samples. 
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Supplementary Figures 





Supplementary Figure S1 The workflow of Motif-Scan toolkit embedded in MAmotif. (a) 

Fraction of H3K27ac ChIP-seq peaks of H1 hESCs and K562 cells that overlap with the 

ChIP-seq peaks of POU5F1, SOX2 and NANOG in H1 hESCs and the peaks of GATA1 and 

TAL1 in K562 cells. Here the H3K27ac peaks of two cell types were merged into one peak list 

and then ranked by their log2-ratios of ChIP-seq intensities between two cell types. A sliding 

window of size 1000 peaks moving from left to right was used to calculate the fraction of 

overlapped peaks. (b) The overall workflow of Motif-Scan toolkit. (c) Definition of the motif score 

between a specific DNA motif and a sequence fragment of the same length to measure its 

similarity with the motif. (d) Enrichment (left panels) and distribution (right panels) plots of the 

occurrence of JASPAR motifs Pou5f1, Gata1 and ZNF263 in the ChIP-seq peaks of 

corresponding TFs in H1 hESCs, K562 and HEK293 cells, respectively. In left panels, peaks 

were ranked by the peak strength (here represented by the P-values from peak calling programs), 

and the fold enrichment of each motif in peak regions compared to random control regions was 

calculated using a sliding window of size 500 peaks. Right panels show the distribution of 

detected motif occurrences in the peak regions relative to the summit of each peak. (e) Fold 

enrichment of JASPAR motifs Pou5f1, Sox2, Gata1 and TAL1::GATA1 in the H3K27ac peaks of 

H1 and K562 cells. Here the H3K27ac peaks of two cell types were ranked by the log2-ratios of 

ChIP-seq intensities between two cell types and then the relative fold enrichment was calculated 

using a sliding window of size 1000 peaks. (f) Violin plots to show the distribution of the 

log2-ratios of H3K27ac ChIP-seq intensities between H1 hESCs and K562 cells over the 

H3K27ac peaks of H1 hESCs (upper panels) and K562 cells (lower panels). In each plot, the 

H3K27ac peaks were first divided into two groups: peaks that contain (red) or don’t contain 

(green) any occurrence of the corresponding motif, and the distribution was drew from each peak 

group separately. Horizontal bars represent the average log2-ratio of each group of peaks. (g-h) 

Fractions of IRF2 ChIP-seq peaks of adult proEs and the corresponding random control regions 

that are detected to contain IRF1 (g) and IRF2 (h) motifs in their sequences by Motif-Scan. Here 



the P-values were calculated by two-tailed Fisher’s exact test using hypergeometric distribution 

to check whether the two fractions are significantly different. (i) Distribution of IRF2 motifs in the 

IRF2 peaks. 





Supplementary Figure S2 The change of H3K4me3 levels at gene promoters between 

adult and fetal proEs is correlated with the change of gene expression levels. (a) Venn 

diagram showing the overlap between the H3K4me3-associated genes of adult and fetal proEs 

and genes differentially expressed between adult and fetal proEs. Here the adult-high genes 

were defined as genes more highly expressed in adult proEs than in fetal proEs, and vice versa 

for the fetal-high genes. (b) Traditional MA plot to visualize the quantitative comparison of 

H3K4me3 ChIP-seq data between adult and fetal proEs using MAnorm. Here M value is defined 

as the log2-ratio of normalized ChIP-seq read densities at each peak (calculated as adult/fetal), 

while A value is the mean log2-transformed ChIP-seq read densities at this peak, and the 

P-value is calculated by MAnorm to represent the significance of the ChIP-seq intensity change 

detected at each peak. (c) Scatter plot of the log2-ratios of gene expression levels between adult 

and fetal proEs versus the log2-ratios of H3K4me3 ChIP-seq intensities over all the 

H3K4me3-associated genes of adult and fetal proEs. Here the genes labeled as 

H3K4me3-associated genes at both adult and fetal stages and those labeled as 

H3K4me3-associated genes only in adult or fetal proEs were plotted in different colors, and the 

log2-ratio of ChIP-seq intensities of the H3K4me3 peak located at each gene’s promoter is 

assigned to it. (d) Fold enrichment of adult/fetal-high genes in the H3K4me3-associated genes of 

adult and fetal proEs. Here the H3K4me3-associated genes were grouped by their log2-ratios of 

H3K4me3 levels between adult and fetal proEs. (e) The overlap between adult-high genes 

(genes more highly expressed in adult proEs than fetal proEs) and genes covered by the 

H3K4me3 promoter peaks of adult proEs that contain IRF1 motifs in their sequences. Here all 

14,108 H3K4me3-associated genes of adult proEs were used as background for enrichment 

analysis and the P-value is calculated by right-tailed Fisher’s exact test (using hypergeometric 

distribution). (f) The overlap between fetal-high genes and genes covered by the H3K4me3 

promoter peaks of adult proEs that contain IRF1/2, MYB, GATA2 motifs, and IRF2 ChIP-seq 

peaks of adult proEs, respectively. (g-h) Fractions of the adult/fetal-biased and unbiased 



H3K4me3 peaks defined by MAnorm that contain IRF2 (g) and GATA2 (h) motifs. (i) Fractions of 

the adult-biased H3K4me3 peaks with and without the presence of IRF2 motifs that also overlap 

with IRF2 ChIP-seq peaks of adult proEs. Here the P-values shown in (g-i) were calculated by 

two-tailed Fisher’s exact test using hypergeometric distribution. (j) Gene ontology (GO) 

enrichment analysis of IRF2 enhancer-bound genes of adult proEs (defined as genes associated 

with the distal active enhancers co-occupied by IRF2 ChIP-seq peaks). (k) Boxplot showing the 

expression changes of IRF2 promoter-bound immune genes between adult and fetal proEs. 

Here IRF2 promoter-bound immune genes were defined as IRF2 promoter-bound genes of adult 

proEs associated with the 6 immune and virus response related terms shown in Figure 1h. 





Supplementary Figure S3 Analysis with the ChIP-seq data of histone modifications 

H3K27ac and H3K4me1 in adult and fetal proEs. (a) Fractions of the adult/fetal-biased and 

unbiased H3K27ac peaks defined by MAnorm that contain IRF2 motif in their sequences. (b) 

Fractions of the adult/fetal-biased and unbiased H3K4me1 peaks defined by MAnorm having 

IRF2 motif. (c) Fractions of the adult/fetal-biased and unbiased H3K27ac-associated genes that 

have IRF2 ChIP-seq peak of adult proEs at their promoters. (d) Fractions of the 

adult/fetal-biased and unbiased H3K4me1-associated genes that have IRF2 peak of adult proEs 

at their promoters. Here the P-values shown in (a-d) were calculated by two-tailed Fisher’s exact 

test using hypergeometric distribution. (e-f) Statistics of the enrichment of adult-high genes (e) 

and IRF2-activated genes (f) in the nearest genes (indicated as IRF2-promoter bound genes) 

and the second nearest genes of IRF2 ChIP-seq peaks in adult proEs. 





Supplementary Figure S4 Analysis with the ChIP-seq data of histone modification 

H3K27ac in H1 hESCs and K562 cells. (a) Venn diagram showing the overlap between the 

H3K27ac-associated genes of H1 hESCs and K562 cells and genes differentially expressed 

between H1 hESCs and K562 cells. Here the H1-high genes were defined as genes more highly 

expressed in H1 hESCs than in K562 cells, and vice versa for the K562-high genes. (b) MA plot 

to visualize the quantitative comparison of H3K27ac ChIP-seq data between H1 hESCs and 

K562 cells using MAnorm. (c) Scatter plot of the log2-ratios of gene expression levels between 

H1 hESCs and K562 cells versus the log2-ratios of H3K27ac ChIP-seq intensities over all the 

H3K27ac-associated genes of H1 hESCs and K562 cells. Here the genes labeled as 

H3K27ac-associated genes in both H1 hESCs and K562 cells and those labeled as 

H3K27ac-associated genes only in H1 or K562 cells were plotted in different colors. (d) The top 

five JASPAR motifs predicted by MAmotif and traditional overlap-based approach that are 

significantly associated with the H1-biased H3K27ac peaks compared to K562 cells. 





Supplementary Figure S5 Comparison of ChIP-seq data using DEseq2. (a) Traditional MA 

plot to visualize the comparison of H3K4me3 ChIP-seq data between adult and fetal proEs using 

DEseq2. Here M value is the normalized log2-ratio of ChIP-seq read counts at each peak 

obtained from DEseq2 (calculated as adult/fetal), and the P-value is calculated by DEseq2 to 

represent the significance of ChIP-seq intensity change at this peak. (b-c) Numbers of the 

adult/fetal-biased H3K4me3 peaks and the adult/fetal-biased H3K4me3-associated genes 

defined by DEseq2 and MAnorm, respectively, using different P-value cutoffs. Here the fractions 

of the stage-biased H3K4me3-associated genes that overlap with genes differentially expressed 

between adult and fetal proEs were also shown. (d) MA plot to visualize the comparison of 

H3K27ac ChIP-seq data between H1 hESCs and K562 cells using DEseq2. (e) Numbers of the 

H1/K562-biased H3K27ac peaks and the H1/K562-biased H3K27ac-associated genes defined 

by DEseq2 and MAnorm, respectively, and the fractions of the cell type-biased 

H3K27ac-associated genes that overlap with genes differentially expressed between two cell 

types. (f) The fractions of aligned ChIP-seq reads covered by the top 15000 peaks of each 

ChIP-seq sample, to illustrate the difference between the signal-to-noise ratios of these 

ChIP-seq samples.  
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