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Background
Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) 
is the premier technology for profiling genome-wide localization of chromatin-binding 
proteins, including transcription factors and histones with various modifications [1, 2]. 
Besides, assay for transposase-accessible chromatin using sequencing (ATAC-seq) has 
been widely adopted for the detection of open chromatin [3]. As a common computa-
tional task for learning from ChIP/ATAC-seq data, identifying genomic regions with 
significant changes of ChIP/ATAC-seq signal intensities across samples is essential to 
understanding the epigenetic mechanisms that orchestrate the variation of gene expres-
sion program [4–6]. For this task, there are two major analyses suited to distinct applica-
tion scenarios. The first one is referred to as differential analysis, in which the label of 
each sample is clearly defined (e.g., healthy or diseased) and differential ChIP/ATAC-
seq signals between different labels are identified by comparing the corresponding sam-
ples [7, 8]. The second analysis does not require prior knowledge regarding the labels of 
samples and aims at identifying hypervariable ChIP/ATAC-seq signals across samples, 
which can then be used as features for the classification of the samples. This analysis is 
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of particular importance in classifying samples of different cancer patients and gaining 
insights into the epigenetic markers of different cancer subtypes/stages [6, 9, 10]. Since 
the second analysis is intrinsically an unsupervised one, it typically requires many more 
samples to achieve reliable results compared to the first analysis.

In the early years, the practical applicability of hypervariable analysis was seriously 
limited by the number of ChIP-seq samples available in a study, and researchers were 
more inclined to apply differential analysis with a proper experimental design. As a 
result, a large body of mature computational tools has been developed for differential 
ChIP-seq analysis [7, 8]. A contrasting example is the analysis of single-cell RNA-seq 
(scRNA-seq) data. As an individual scRNA-seq experiment generates transcriptome 
profiles of a large number of cells and researchers typically have no detailed prior knowl-
edge about the cell identities, hypervariable analysis has been frequently applied to 
scRNA-seq data [11–13]. Accordingly, many computational tools for identifying hyper-
variable genes (HVGs) from scRNA-seq data and using these genes to classify cells have 
been developed [14–16].

In recent years, with the decrease of sequencing costs, there are more and more large-
scale studies in which tens or even hundreds of ChIP/ATAC-seq profiles for different 
human individuals are generated, and hypervariable analysis is becoming increasingly 
prevalent in the analysis of ChIP/ATAC-seq data [6, 9, 10, 17, 18]. In particular, hyper-
variable ChIP/ATAC-seq signals across cancer patients could be potential epigenetic 
markers of different cancer subtypes/stages, and these markers may serve as therapeutic 
targets and may contribute to the prognosis of patients [6]. To our best knowledge, how-
ever, there are currently no such computational tools that are specifically developed for 
hypervariable ChIP/ATAC-seq analysis.

In many studies, researchers designed their own computational pipelines for calling 
hypervariable ChIP/ATAC-seq signals [9, 10, 17, 19–22], but some of these pipelines 
failed to take some basic data characteristics into account. For example, sequencing 
count data are inherently associated with a strong dependence of signal variability on the 
mean signal intensity, making the ChIP/ATAC-seq signal variability of different genomic 
regions not directly comparable with each other. Specifically, after a logarithmic trans-
formation, small log-counts tend to have larger variances than large log-counts [23, 24]. 
While this mean-variability relationship has been properly accounted for in almost all 
the tools for calling HVGs from scRNA-seq data, several studies called hypervariable 
ChIP/ATAC-seq signals by ranking genomic regions based on some variability index 
without considering its dependence on the mean signal intensity [9, 10, 19, 21, 22]. 
Other studies alleviated the influence of the mean-variability trend by applying various 
practical strategies, such as combining the rankings based on the mean intensities and 
variances [20] and making a log-transformation with a large offset count to suppress the 
large variances of small log-counts [17]. These strategies were effective, but their imple-
mentation details (e.g., the exact offset count) and performance highly rely on the spe-
cific data set, and thus, their general applicability is questionable.

A more fundamental problem is that, instead of coming up with a probabilistic 
model to assess the statistical significances of observed ChIP/ATAC-seq signal var-
iability, all these studies ranked genomic regions and selected a certain number or 
proportion of top-ranked ones as hypervariable regions (HVRs), with the specific 
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number or proportion being determined based on practical experience. In these stud-
ies, the numbers and proportions ranged from 1000 to 10,000 and from 1 to 25%, 
respectively. On the one hand, designing a complete statistical model with p-value 
calculation can increase the adaptivity to various data sets and avoid an arbitrary 
selection of HVRs. On the other hand, using an ordinary model fitting framework will 
almost certainly lead to conserved p-values and low statistical power for identifying 
HVRs, since it is difficult to strictly avoid the influence of true HVRs on the fitting 
process. A previous study of ours has suggested that p-values derived from an ordi-
nary parameter estimation framework can hardly bear the strength of multiple testing 
adjustment [6].

In this study, we present HyperChIP, a statistical method for hypervariable ChIP/
ATAC-seq analysis that is aimed at addressing the above concerns. In this method, a 
variability statistic that has been corrected for the mean signal intensity is used as the 
key statistic, and specific efforts have been made to increase the statistical power for 
identifying HVRs. For the latter, HyperChIP selects a subset of genomic regions with 
relatively low signal intensities for parameter estimation and further employs the win-
sorization technique [25] to render the estimation procedure robust to true HVRs. 
Our empirical observations on various data sets suggest that these low-intensity 
regions contain only a small proportion of HVRs, which can be effectively handled 
by winsorization. Applying HyperChIP to several real data sets, of which each com-
prised ChIP/ATAC-seq profiles of tens of cancer patients, we found that the method 
can identify hundreds to thousands of significant HVRs at common cutoffs of the 
BH-adjusted p-value, which controls the false discovery rate [26]. Further exploration 
revealed that the identified HVRs tended to be associated with the tumor progression 
stages of patients. We also observed a systematic difference in variability structure 
between proximal and distal regions. Specifically, the ChIP/ATAC-seq signal varia-
bility in distal regions was considerably higher than that in proximal regions, which 
was consistent with previous studies showing that the activity of enhancer elements 
is much more variable across individuals and cellular contexts than is the activity of 
gene promoters [27–29]. We therefore highlight the necessity of separately dealing 
with proximal and distal regions in a hypervariable ChIP/ATAC-seq analysis, to avoid 
the suppression of the statistical power for identifying proximal HVRs.

To demonstrate the practical utility of HyperChIP, we additionally applied it to a pan-
cancer ATAC-seq data set, which was generated by The Cancer Genome Atlas (TCGA) 
program and consisted of ATAC-seq profiles of tumors from hundreds of patients across 
23 cancer types [17]. Based on the identified HVRs, we investigated the similarity struc-
ture among the ATAC-seq profiles. While most of them were well clustered by their can-
cer types, those of various types of squamous cell carcinoma (SC) tended to be mixed up 
with each other. We further defined super classes of cancer types based on the similarity 
structure and identified transcription factors (TFs) specific to each class by applying a 
motif-scanning procedure on the HVRs. Notably, many of the identified TFs were found 
to be exclusively expressed in the corresponding classes showing a strong association 
with either tissue specificity, tumorigenesis, or both. For example, TP63, a confirmed 
oncogene in several SC types [30, 31], was identified as the most significant TF specific 
to the SC class.
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Results
Ranking genomic regions based on scaled variances

To evaluate the performance of HyperChIP, we collected three data sets from large-scale 
cancer studies (Table 1). The first data set comprised H3K27ac ChIP-seq profiles, a his-
tone modification marking both active promoters and enhancers, of tumor tissues of 36 
lung adenocarcinoma (LUAD) patients [6]. The second one consisted of ATAC-seq sam-
ples of 34 non-small cell lung carcinoma (NSCLC) patients [18]. The third one consisted 
of RNA polymerase (Pol) II ChIP-seq samples of 26 LUAD cell lines derived from differ-
ent patients [32].

To facilitate the understanding of how HyperChIP works, we briefly describe the 
required input data of it. HyperChIP takes a matrix of normalized log2 read counts as 
input. The rows and columns of the matrix correspond to a pre-defined list of genomic 
regions and a set of ChIP-seq samples, respectively. In this study, we separately com-
piled a list of regions for each data set. Given a data set, we first called peaks for each 
sample and merged all the resulting peaks. Broad merged peaks were then divided up 
into consecutive bins, and narrow ones were left as they were. As for normalization, 
we constructed a pseudo-reference profile by averaging all the samples and invoked the 
MA normalization procedure implemented in MAnorm2 [24] to normalize each sam-
ple against it (see the “Methods” section). Note also that, unless otherwise stated, each 
hypervariable analysis in this study targeting an individual data set has separately han-
dled proximal and distal regions.

Given a matrix of normalized signal intensities, HyperChIP accounts for the associ-
ated mean-variability relationship by applying a gamma family regression method to 
observed mean-variance pairs. Specifically, it employs a local regression procedure to 
allow for general mean-variance relationships [33]. It can be easily seen that all the three 
data sets are associated with clear mean-variance dependence, and the specific trend 
depicted by the fitted mean-variance curve (MVC) varies across the data sets (Fig. 1a; 
Additional file 1: Fig. S1). Then, HyperChIP uses the MVC to derive a scaled variance for 
each genomic region, which is defined as the ratio of the observed variance to the pre-
dicted variance obtained from the MVC (Fig. 1b; Additional file 1: Fig. S2). These scaled 
variances shall be used for ranking regions and selecting HVRs.

To benchmark HyperChIP, we considered several other methods for ranking regions. 
These methods can be classified into two classes. One class uses some variability sta-
tistics to rank regions without taking its dependence on the mean signal intensity into 
account. Such statistics included the observed (unscaled) variance [19, 21, 22], median 
absolute deviation (MAD) [9], and interquartile range (IQR) [10]. We found that all the 
methods of this class were associated with a tendency to select regions with low signal 

Table 1  Large-scale cancer data sets used for benchmarking HyperChIP. Each data set was 
comprised of ChIP/ATAC-seq profiles of tens of cancer patients

LUAD Lung adenocarcinoma, NSCLC Non-small cell lung carcinoma

Data set Biological context Cohort size Source

H3K27ac ChIP-seq Tumor tissues of LUAD patients 36 Yuan et al. [6]

ATAC-seq Tumor tissues of NSCLC patients 34 Wang et al. [18]

Pol II ChIP-seq Cancer cell lines derived from LUAD patients 26 Suzuki et al. [32]
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intensities as HVRs (Additional file 1: Fig. S3a). The methods of the other class adopt dif-
ferent practical strategies to account for the mean-variability dependence. We included 
two methods in this class. The first method, referred to as min-rank, is primarily aimed 
at selecting regions with both high intensities and high variability [20]. It first separately 
uses the observed mean intensities and the observed variances to sort genomic regions 
into ascending order. Then, it takes the minimum of the two ranks associated with each 
region and uses these minima to once again rank the regions. When applying min-rank, 
we found this method clearly tended to select regions with high intensities as HVRs 
(Additional file 1: Fig. S3b). The second method follows a computational pipeline used 
in a previous study [17]. It first derives count per million (CPM) values and applies a log2 
transformation with a moderately large offset. The results are then subject to quantile 
normalization. For this method, we have separately tried 5 and 10 as the offset value 
(Additional file 1: Fig. S3c).

Fig. 1  Using scaled variances to rank genomic regions. a Scatter plots showing the mean-variance trends 
associated with different data sets. Variance is shown at the log10 scale. Red lines depict the corresponding 
MVCs. Red points mark the 1000 regions with the largest scaled variances. b A scatter plot of log10 scaled 
variances against observed mean signal intensities. c, d For each data set in Table 1, the TDP among 
top-ranked proximal regions is plotted against the number of top-ranked proximal regions for each method. 
MAD, median absolute deviation; IQR, interquartile range
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To assess the rankings of genomic regions provided by each method, we calculated true 
discovery proportions (TDPs) among top-ranked regions. More specifically, we defined, 
among proximal regions, true HVRs as those regions that were linked with HVGs, which 
were identified based on the corresponding RNA-seq data (see the “Methods” section 
and Additional file 1: Fig. S4). We then plotted the TDP against the number of the top-
ranked proximal regions for each method. Compared with the methods that do not con-
sider the mean-variability dependence, HyperChIP achieved much higher TDPs for all 
the three data sets (Fig. 1c). Compared with the methods of the other class, HyperChIP 
performed better or as well as them depending on the specific data set (Fig. 1d).

A common downstream analysis based on identified HVRs is to use them as features 
for the classification of samples, with the hope of revealing the substructure of the sam-
ples. In the ATAC-seq data set, the 34 NSCLC patients consisted of 26 LUAD and 8 
LUSC (lung squamous cell carcinoma) cases, corresponding to two primary subtypes 
of NSCLC [18]. These subtype labels can be considered the gold standard for evaluat-
ing the classifications of the patients. Here, based on the top-ranked HVRs derived by 
different methods, we performed classifications of the patients into two subgroups (see 
the “Methods” section) and assessed the consistency between the classifications and the 
gold standard by using the adjusted Rand index (ARI) [34]. This index has an expected 
value of 0 for random classifications and is bounded above by 1 for a perfect agreement 
between two classifications. The relative performance of different methods was similar 
as in the previous comparison based on HVGs: HyperChIP showed an overall perfor-
mance better than each of the other methods, especially when it was compared with the 
methods that do not consider the mean-variability dependence (Fig. 2a, b). Furthermore, 
the classification results from HyperChIP were very stable across a wide range of num-
bers of used HVRs (Fig. 2c).

Modeling scaled variances and increasing the statistical power for identifying HVRs

A complete statistical model specifying the null distribution of the scaled variances is 
required for assessing their statistical significances. We previously developed MAnorm2 
for differential ChIP-seq analysis [24]. In HyperChIP, we follow the distributional the-
ory proposed by MAnorm2 for modeling a group of ChIP-seq samples. Specifically, we 
assume the normalized log2 read counts at each genomic region follow a normal distri-
bution, with the precision parameter associated with a prior gamma distribution whose 
expectation value is determined by the MVC. Formally, let Xij denote the normalized 
log2 read count at region i in sample j. We assume:

Here, μi and σ 2
i  are two unknown parameters that quantify the mean signal intensity 

at region i and the associated signal variability, respectively; f(∙) denotes the MVC; d0, 
referred to as the number of prior degrees of freedom, effectively assesses how dispersedly 
the observed variances are distributed around the MVC (larger values of d0 indicate the 

(1)Xij | σ
2
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.
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observed variances are more concentrated at the MVC); γ is referred to as the variance ratio 
factor and is designed for scaling the MVC to better fit the observed mean-variance pairs 
under this model formulation.

Next, suppose µ̂i and t̂i are the observed mean intensity and variance of region i, respec-
tively (i.e., the sample mean and sample variance of all Xij associated with region i). Based 
on the model, it follows:

(3)
t̂i

f (µi)
∼ γ Fm−1,d0 ,

Fig. 2  Evaluating the classifications of samples that are based on top-ranked HVRs identified by different 
methods. a, b For each method applied to the ATAC-seq data set, the ARI is plotted against the number of 
top-ranked HVRs that are used to classify the ATAC-seq samples. Each ARI value assesses the consistency 
between the classification and the true labels of the samples. Proximal and distal regions are separately 
analyzed and ranked. c Box plots for the ARI values resulting from using a wide range of numbers of 
top-ranked HVRs to classify the samples. For each method, the sequence of numbers starts with 50 and ends 
with 5000, with an increment of 50
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where m is the total number of samples. The scaled variances for ranking genomic 
regions are exactly obtained by replacing μi on the left-hand side of (3) with µ̂i , and 
HyperChIP uses the right-hand side of (3) as the null distribution of the scaled variances 
for deriving p-values (i.e., upper-tailed probabilities). Additional file 2: Note S1 provides 
a justification for this approximation by performing a random simulation.

Previously, we adopted in MAnorm2 a method of moments for parameter estimation, 
in which d0 and γ are estimated by matching the first two sample moments of log-scaled 
variances with the corresponding theoretical moments of log

(

γ Fm−1,d0

)

 . In a hypervari-
able analysis, however, using this method would lead to low statistical power for identi-
fying HVRs, since true HVRs are included in the calculation of sample moments as well 
and their large variances would give rise to an underestimated d0. In fact, when applying 
this method to the three data sets, we can barely identify any significant HVRs at com-
mon cutoffs of the BH-adjusted p-value (Tables 2 and 3).

This low-power problem can be alleviated by selecting a subset of genomic regions 
with a relatively low abundance of HVRs to estimate the parameters, provided that the 
selection criterion is statistically independent of the test statistic (i.e., the scaled vari-
ance) under the null model. Inspired by the independent filtering strategy designed by 
DESeq2 for reducing the strength of multiple testing adjustment [35], HyperChIP uses 
the observed mean intensity of each region as its selection criterion. To determine the 
specific criterion, we first examined how top-ranked HVRs were distributed along the 

Table 2  Numbers of significant proximal HVRs identified by applying different parameter estimation 
methods with various cutoffs of the BH-adjusted p-value. The original method refers to the moment 
matching method used by MAnorm2, and the other method corresponds to the default settings of 
HyperChIP

Parameter estimation Data set Number of significant proximal HVRs

0.01 0.05 0.1

Original H3K27ac ChIP-seq 0 2 2

ATAC-seq 5 8 10

Pol II ChIP-seq 0 0 0

Lower 10% + winsorization H3K27ac ChIP-seq 237 789 1442

ATAC-seq 1050 2171 3197

Pol II ChIP-seq 303 990 1546

Table 3  Numbers of significant distal HVRs identified by applying different parameter estimation 
methods with various cutoffs of the BH-adjusted p-value

Parameter estimation Data set Number of significant distal HVRs

0.01 0.05 0.1

Original H3K27ac ChIP-seq 2 8 12

ATAC-seq 0 3 4

Pol II ChIP-seq 0 0 0

Lower 10% + winsorization H3K27ac ChIP-seq 289 1372 2621

ATAC-seq 3124 6830 10,234

Pol II ChIP-seq 602 1400 2122
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range of mean intensities for each of the three data sets. More specifically, we sorted 
all regions in ascending order (with respect to the mean intensities) and divided them 
into 10 equally sized groups. We then calculated the proportion of those regions among 
each group that were ranked in the top 2000 HVRs. It was found that, among proximal 
regions, top-ranked HVRs tended to be enriched within the groups with moderately large 
mean intensities, while for distal regions, they tended to be enriched within the groups 
with the largest mean intensities (Fig. 3a; Additional file 1: Fig. S5a). We also noticed that 
previous studies had observed many genes with very stable expression strength across 
cellular contexts. These genes, referred to as lowly variable genes (LVGs), tended to be 
related to fundamental or so-called constitutive cellular processes, such as translation and 
translational elongation [15]. Since the regions in which ChIP-seq signals have extremely 
low variability across samples could also lead to the underestimation of d0, we examined 
as well the distribution of top-ranked lowly variable regions (LVRs), namely the regions 
having the smallest scaled variances (Fig. 3b). For both proximal and distal regions, we 
found that the top-ranked LVRs tended to be enriched within the groups with the larg-
est mean intensities (Fig. 3c; Additional file 1: Fig. S5b). For all the three data sets, the 
only exception was that the top-ranked proximal LVRs associated with the Pol II ChIP-
seq data set were enriched within the center-right groups as well as within the rightmost 
group, showing a bimodal distribution profile (Additional file 1: Fig. S6).

Based on these observations, we set the default behavior of HyperChIP to using the 
10% of regions having the smallest mean intensities for parameter estimation. To further 
account for the presumably small amount of HVRs and LVRs among these low-inten-
sity regions, HyperChIP integrated the winsorization procedure [25] into the original 
moment matching method to avoid their influence on parameter estimation (see the 
“Methods” section). Using the three data sets as examples, we tried different parameter 
estimation strategies and compared the resulting d0 estimates. With the subset selection 
and the use of winsorization, a stepwise increase in the estimated d0 was consistently 
observed across the data sets (Fig. 3d; Additional file 1: Fig. S5c), suggesting an improved 
statistical power associated with the model fitted by HyperChIP.

To more directly demonstrate the effect of the modifications made by HyperChIP to the 
original MAnorm2 method, which does not apply a subset selection and winsorization, 
we compared the empirical distribution of scaled variances with the null distributions 
inferred by the two methods. We first paid specific attention to the low-intensity regions 
selected by HyperChIP for parameter estimation, and we observed that, when applying 
the original method, most of these regions did not even reach the variability magnitude as 

Fig. 3  Selecting a subset of genomic regions and using winsorization for parameter estimation. a For the 
H3K27ac ChIP-seq data set, bar plots show the distributions of top-ranked proximal/distal HVRs along the 
range of mean intensities. Proximal and distal regions have been separately divided into 10 equally sized 
groups based on the observed mean signal intensities. b Scatter plots of log10-scaled variances against 
the mean intensities of proximal/distal regions. Top-ranked HVRs and LVRs are separately highlighted. c Bar 
plots showing the distributions of top-ranked proximal/distal LVRs along the range of mean intensities. d d0 
estimates resulting from different parameter estimation methods. The original method refers to the moment 
matching method employed by MAnorm2, which does not apply a subset selection and winsorization. 
The method labeled as “lower 10%” uses only the 10% of regions having the smallest mean intensities for 
parameter estimation

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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suggested by the null distribution (Fig. 4a), indicating this null distribution was too biased 
towards large values for sensitive identification of HVRs. In comparison, the null distribu-
tion inferred by HyperChIP better matched these regions, especially for the regions with 
relatively small-scaled variances (Fig.  4b). Accompanying this improved fit to the low-
intensity regions was a dramatic change of the overall distribution of p-values (Fig. 4c, 
d). Specifically, the p-values resulting from the original method were generally conserved 
with no enrichment near 0, while the p-values derived by HyperChIP showed clear 
enrichments at both ends of [0, 1], highlighting improved statistical power for identifying 
LVRs as well as HVRs. With this improvement, we were now able to detect hundreds to 
thousands of statistically significant HVRs for each of the three data sets (Tables 2 and 3).

Biological interpretation of HVRs and LVRs

To explore the roles of HVRs/LVRs in specific biological contexts, we first defined a set 
of significant proximal HVRs/LVRs for the H3K27ac ChIP-seq data set (BH-adjusted 

Fig. 4  HyperChIP is associated with an improved statistical power for identifying HVRs. a, b For the 10% of 
genomic regions having the smallest mean intensities, plotting sample quantiles of the scaled variances 
against theoretical quantiles of the null distribution inferred by a the original method or b HyperChIP (i.e., 
the method labeled as “lower 10% + winsorization”). c, d The overall distributions of (one-tailed) p-values 
resulting from c the original method or d HyperChIP
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p-value < 0.1; for the identification of significant LVRs, p-values were derived as lower-
tailed probabilities of the null distribution). Then, we performed Gene Ontology (GO) 
enrichment analysis for the genes linked with these HVRs/LVRs (only the GO terms 
for biological processes were used). For comparison, we also randomly selected a set of 
other proximal peak regions that matched the number of the HVRs. Compared to the 
genes linked with these randomly selected regions, from which no significant GO terms 
were enriched when relatively stringent p-value cutoffs were applied, the genes linked 
with the HVRs/LVRs enriched more terms (Fig. 5a), suggesting they might be associated 
with coordinated biological functions. Specifically, the genes linked with the LVRs were 
enriched for GO terms of constitutive cellular processes, including various histone mod-
ifications, tRNA modification, and RNA catabolic processes (Fig. 5b; Additional file 3: 

Fig. 5  Biological interpretation of HVRs and LVRs. a For each gene set, the number of significant GO terms 
is plotted against the p-value cutoff used in the GO enrichment analysis. Significant proximal HVRs/LVRs 
used here are defined based on the LUAD H3K27ac ChIP-seq data set. b Example GO terms enriched from 
the genes linked with the significant proximal LVRs. Additional file 3: Table S1 gives a full list of the top 
20 GO terms. c, d Box plots showing the fractions of conserved bases in different genomic regions. Here, 
the conserved bases are defined as those with a phastCons score over 0.9. Red dotted lines indicate the 
genome-wide fraction. e Example GO terms enriched from the genes linked with the significant proximal 
HVRs. Additional file 3: Table S2 gives a full list of the top 20 GO terms. f, g Box plots showing the correlations 
of H3K27ac levels in different regions with the clinical stage of LUAD progression. Here, the correlations are 
measured by the absolute value of the Spearman correlation coefficient. h Significant proximal HVRs defined 
for the NSCLC ATAC-seq data set are enriched with somatic SNVs. We have performed 1000 times of random 
simulation. In each time, a set of proximal peak regions matching the number of the HVRs has been randomly 
selected. i Significant distal HVRs are enriched with somatic SNVs as well
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Table  S1). Consistently, the LVRs showed clearly higher sequence conservation across 
species [36] than both the HVRs and the randomly selected regions (Fig.  5c). Similar 
results were also observed when we defined significant distal HVRs/LVRs and selected a 
set of random distal peak regions (Fig. 5d).

In contrast, the genes linked with the proximal HVRs were enriched for GO terms 
related to lung development, cell differentiation, or the identity of lung cells (Fig.  5e; 
Additional file  3: Table  S2). For example, surfactant homeostasis, which is a kind of 
chemical homeostasis important for the lungs, is a characteristic biological process 
of alveolar cells [37], a confirmed cell of origin of LUAD [38, 39]. Since alveolar cells 
become more and more poorly differentiated and gradually lose their cell identity as 
LUAD progresses [40], these results implied that the epigenetic heterogeneity at the 
proximal HVRs across the LUAD patients may be connected with their different tumor 
progression stages. Following this speculation, we examined the correlations of the 
H3K27ac ChIP-seq signals in different regions with the histopathological labels of the 
patients that can reflect their tumor progression stages (see the “Methods” section), and 
we observed considerably stronger correlations on the proximal HVRs compared to both 
the proximal LVRs and the random proximal peak regions (Fig. 5f ). Similar results were 
also observed on the distal regions (Fig. 5g). We next evaluated the prognostic associ-
ations of different regions by separately performing a Cox regression on the H3K27ac 
ChIP-seq signal in each region [41]. It was found that the proximal/distal HVRs were 
more significantly associated with the survival time of the patients than the proximal/
distal LVRs and the random proximal/distal peak regions (Additional file  1: Fig. S7a, 
b). Moreover, we performed a hierarchical clustering of the patients by using both the 
proximal and distal HVRs as features (see the “Methods” section). The patients were 
classified into two distinct subgroups, and a significant survival difference was observed 
between them (Additional file 1: Fig. S7c, d).

Genetic variation across individuals has been revealed as one of the causes of the asso-
ciated epigenetic heterogeneity [28, 42]. To explore this relationship, we assessed the 
enrichment of genetic variants within HVRs. Here, we defined significant proximal and 
distal HVRs for the ATAC-seq data set and mapped them to the somatic single nucleo-
tide variants (SNVs) identified for the associated NSCLC patients by the original study 
[18]. By random simulation, we observed that both the proximal and distal HVRs con-
tained significantly more somatic SNVs than by chance (Fig. 5h, i). Similarly, the HVRs 
showed a significant association with somatic copy number variation (Additional file 1: 
Fig. S8). We also obtained a list of germline single nucleotide polymorphisms (SNPs) for 
the patients and found they were enriched within the HVRs as well (Additional file 1: 
Fig. S9). Among these germline SNPs, we next performed a systematic identification 
of the quantitative trait loci (QTLs) at which different genotypes were associated with 
significantly differential ATAC-seq signals in the vicinity (see the “Methods” section). 
Owing to the large number of statistical tests and the relatively small sample size, only 
several significant QTLs were identified after multiple testing adjustments, and most of 
them were located within the HVRs (Additional file  1: Fig. S10a, b). For example, the 
most significant QTL was located within a proximal HVR, and its genotype was signifi-
cantly associated with the ATAC-seq signal at the HVR as well as the expression strength 
of the downstream gene (Additional file 1: Fig. S10c, d). The most significant distal QTL 
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was located within an HVR as well, and its genotype was significantly associated with 
both the ATAC-seq signal at the HVR and the expression strength of the nearest gene 
(Additional file 1: Fig. S10e, f ). In conclusion, these findings indicated that the epigenetic 
heterogeneity at the HVRs across the patients was linked with their genetic variation.

Applying HyperChIP to a large pan‑cancer ATAC‑seq data set

To illustrate the practical utility of HyperChIP, we applied it to a pan-cancer ATAC-
seq data set from TCGA [17], which comprised ATAC-seq samples of tumor tissues of 
410 patients across 23 cancer types (Additional file 3: Table S3). Applying HyperChIP 
to this data set, we identified 5823 proximal HVRs and 2393 distal ones (BH-adjusted 
p-value < 0.1). Based on the ATAC-seq signals in these HVRs, we performed a t-dis-
tributed stochastic neighbor embedding (t-SNE) analysis [43] to dissect the similarity 
structure among the patients (see the “Methods” section). Naturally, most of the cancer 
types were well separated from each other in the two-dimensional t-SNE plot (Fig. 6a). 
We indeed, however, noticed a few exceptions. For example, kidney renal clear cell car-
cinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP), which have the same 
tissue of origin [44], were very close to each other in the t-SNE plot. Another simi-
lar example was glioblastoma multiforme (GBM) and brain lower grade glioma (LGG), 
both of which were brain cancers. Of note, there were two mixtures of cancer types, 
both of which involved cancer types of different tissue origins (Fig. 6b, c). Further, we 
found that the two mixtures largely corresponded to SC and digestive adenocarcinoma 
(DIAD), respectively. Specifically, the esophageal carcinoma (ESCA) patients in this 
data set comprised 12 esophageal squamous cell carcinoma (ESSC) and 6 esophageal 
adenocarcinoma (ESAD) cases, and the distribution of these two subtypes in the t-SNE 
plot was very consistent with that of the SC and DIAD classes (Fig. 6d), suggesting the 
HVRs identified by HyperChIP can contribute to revealing the substructures of indi-
vidual cancer types. Another example regarded the breast invasive carcinoma (BRCA) 
patients, which consisted of 14 basal and 61 non-basal cases. These two subtypes of 
BRCA corresponded to two patient clusters that were clearly separated from one 
another (Additional file 1: Fig. S11).

Next, we focused on the four super classes of cancer types (i.e., kidney carcinoma, 
brain cancer, SC, and DIAD) and explored the common properties of each class from the 
perspective of transcriptional regulators. Technically, we obtained 521 binding motifs 
of 432 different human TFs from the JASPAR database [45] and quantitatively inferred 
the activity of the TFs in each ATAC-seq sample (an individual TF could be associated 
with multiple motif versions). To achieve that, we first identified the instances of each 
motif in the genome by employing a motif-scanning routine [46]. Then, for each motif, 
we took the HVRs containing its instances and used the average ATAC-seq signal across 
these HVRs (in each sample) as an activity score of the corresponding TF (the ATAC-seq 
signals in different HVRs had been separately scaled beforehand; see the “Methods” sec-
tion). Finally, we identified class-specific TFs by comparing the activity scores derived 
from each motif between the samples belonging to each class and the other samples, 
with the application of t-tests (Additional file 4: Table S4). Figure 6e illustrates several 
representative (top-ranked) motifs for each of the four classes.
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We noticed that a number of the identified class-specific TFs have been reported 
to have tissue-specific activity in the corresponding organs. For example, HNF4A is 
an important TF linked with the regulation of liver-specific gene expression as well as 

Fig. 6  Applying HyperChIP to a TCGA pan-cancer ATAC-seq data set. a Two-dimensional t-SNE plot of all 
patients based on their ATAC-seq profiles of tumor tissues. The patients are colored by cancer types (see 
Additional file 3: Table S3 for the full names of the involved cancer types). b The distribution of the patients 
belonging to the SC class. c The distribution of the patients belonging to the DIAD class. d The distribution of 
all ESCA patients, comprising 12 ESSC and 6 ESAD cases. e Heat map showing the TF activity scores of the top 
15 binding motifs identified for each class of cancer types. f Plotting the t-statistics of all motifs against their 
rankings in the identification of DIAD class-specific TFs. g Mapping the TF activity scores of the HNF4A motif 
to the t-SNE plot. h Mapping the expression levels of the HNF4A gene (calculated from the corresponding 
RNA-seq samples) to the t-SNE plot. i Box plots showing the expression of HNF4A in a larger TCGA cohort of 
(7183) patients. The expression data are accessed via the online tool GEPIA, in which ESSC and ESAD patients 
are both labeled ESCA and cannot be distinguished from each other. The cancer types are sorted by the 
median expression of HNF4A in tumors. For each cancer type, the significance of differential expression is 
determined by performing a t-test with a p-value cutoff of 0.01 and a fold change cutoff of 2. TPM, transcripts 
per million. j Plotting the t-statistics of all motifs against their rankings in the identification of SC class-specific 
TFs. k Mapping the TF activity scores of the TP63.1 motif to the t-SNE plot. l Mapping the expression levels of 
the TP63 gene to the t-SNE plot. m Box plots showing the expression of TP63 in the larger TCGA cohort
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multiple biological processes in the epithelia of the gastrointestinal tract and kidneys [47, 
48]. In our analysis, both HNF4A and HNF4A.1 were identified as top-ranked motifs for 
the DIAD class (Fig. 6f ), of which all the three cancer types originated in organs of the 
gastrointestinal tract (i.e., the esophagus, stomach, and large intestine). Compared to 
the other cancer types, ATAC-seq samples of the DIAD and kidney carcinoma classes 
as well as those of the liver-associated cancer types, including liver hepatocellular carci-
noma (LIHC) and cholangiocarcinoma (CHOL), showed clearly higher HNF4A activity 
scores (Fig. 6g). Consistently, based on the matched RNA-seq samples, we found HNF4A 
was expressed almost exclusively in these cancer types (Fig. 6h). We further accessed the 
expression strength of HNF4A in tumor tissues and adjacent normal tissues of a much 
larger cohort of cancer patients, by using the GEPIA web server [49]. A consistent tissue 
specificity of HNF4A was observed in this cohort as well, and we found no systematic dif-
ferential expression of HNF4A between the tumor and matched normal tissues (Fig. 6i). 
Another example was HNF1A, a TF specifically expressed in organs of endoderm origin, 
including the kidneys and almost all the digestive organs [50]. In our analysis, HNF1A 
was identified as a top-ranked TF for the kidney carcinoma class, and both of its activ-
ity scores and expression strength showed consistent tissue specificity with its biological 
roles (Additional file 1: Fig. S12a-c). Again, we found no systematic differential expression 
of HNF1A between the tumor and matched normal tissues (Additional file 1: Fig. S12d).

By contrast, multiple top-ranked TFs identified for the SC class were common oncogenes 
shared by the involved SC types. For example, TP63 has been implicated as an oncogene in 
several SC types, including head and neck squamous cell carcinoma (HNSC) [51], LUSC [52], 
and ESSC [53]. In our analysis, TP63 was the top 1 TF for the SC class (Fig. 6j). Compared to 
the other cancer types, the cancer types of the SC class exhibited considerably higher activity 
scores and expression levels of TP63 (Fig. 6k, l). We next examined the expression of TP63 
in the larger cohort of cancer patients. Notably, for each SC type, TP63 showed significantly 
higher expression in the tumor tissues than in the matched normal tissues, and such upregu-
lation of TP63 was not observed in any non-SC cancer types (Fig. 6m). These results sug-
gested TP63 could be a “pan-SC” oncogenic TF. Another example was TP73, which ranked 
second for the SC class. Similar to TP63, TP73 showed systematically increased expression 
in the tumor tissues of the SC types (Additional file 1: Fig. S13).

There was also a third type of class-specific TFs, which was associated with strong tis-
sue specificity as well as significantly differential expression between tumor and matched 
normal tissues. For example, RFX4 is a TF specifically expressed in the brain [54], and it 
has been recently revealed to be associated with tumor progression in patients with glio-
blastoma [55]. In our analysis, RFX4 ranked first for the brain cancer class (Additional 
file 1: Fig. S14a). Among all the cancer types, RFX4 was exclusively expressed in GBM 
and LGG, and its expression in them was significantly higher than in the matched nor-
mal tissues (Additional file 1: Fig. S14b-d). Together, these results indicated the HVRs 
identified by HyperChIP can contribute to the identification of regulators pertaining to 
the heterogeneity across samples.

Applying HyperChIP to non‑cancer data sets

Chromatin states vary extensively even across normal humans [28, 42]. To explore 
the usefulness of hypervariable ChIP/ATAC-seq analysis in this context, we applied 
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HyperChIP to a CTCF ChIP-seq data set comprising samples of 17 lymphoblastoid cell 
lines (LCLs) derived from different human individuals, including 6 Caucasian individu-
als (GM10847, GM12878, GM12890, GM12891, GM12892, SNYDER), 7 Yoruban indi-
viduals (GM18486, GM18505, GM19099, GM19193, GM19238, GM19239, GM19240), 
and 4 individuals from the San population (GM2255, GM2588, GM2610, GM2630) 
[28]. In total, 364 proximal HVRs and 498 distal ones were identified (BH-adjusted 
p-value < 0.1). We then performed principal component analysis (PCA) of the CTCF 
ChIP-seq samples with all peak regions or only the HVRs as features. Interestingly, it 
was found that only in the latter case were the LCLs well clustered by their populations 
of origin (Fig. 7a, b). This finding suggested that the hypervariable CTCF binding sig-
nals captured by HyperChIP across the LCLs were useful for dissecting the similarity 
structure among them.

To illustrate the utility of HyperChIP in analyzing ChIP/ATAC-seq samples from 
time course experiments, we further incorporated a mouse ATAC-seq data set that 
profiled the chromatin accessibility in preimplantation embryos at different develop-
ment stages [56]. In detail, this data set contained 2 biological replicates separately 
for the 2-cell, 4-cell, and 8-cell embryos and the inner cell masses (ICMs) of the blas-
tocysts, as well as 3 biological replicates for mouse embryonic stem cells (mESCs; 
derived from ICMs). Applying HyperChIP, we identified 303 proximal HVRs and 383 
distal ones (BH-adjusted p-value < 0.1). PCA with these HVRs as features revealed 
that a large proportion (71.6%) of the ATAC-seq signal variability at these regions 
was accounted for by the first principal component, which showed a strong asso-
ciation with the development timeline (Fig.  7c). We then accordingly classified the 
samples into early-stage (2-cell, 4-cell, and 8-cell embryos) and late-stage (ICMs 
and mESCs) ones, and the same motif analysis as applied to the pan-cancer ATAC-
seq data set was repeated to identify stage-specific regulators (Fig. 7c, d; Additional 
file 5: Table S5). Consistent with the findings in the original study [56], both Rarg and 
Nr5a2 were identified as top-ranked TFs associated with the early stage, and their 
expression showed a clear and consistent difference between the two stages as well 
(Fig. 7e; Additional file 1: Fig. S15a). Another example was the Obox family, which is a 
homeobox gene family and has been implicated in early embryonic development [57, 
58]. In particular, it has been found that the transcripts of both Obox2 and Obox3 are 
most abundant in the 1-cell embryos with the abundance decreasing in further devel-
opment until no expression is observed in the morulae (before the blastocysts), and 
the expression of Obox6 is concentrated between the 2-cell embryos and the morulae. 
For the late stage, both Sox2 and Klf4 (known regulators of ICMs and mESCs) were 
identified as top-ranked TFs (Fig. 7f ). Another example was Gbx2 (Additional file 1: 
Fig. S15b), which is an upstream regulator of Klf4 and maintains naïve pluripotency 
of mESCs by inducing the expression of Klf4 [59]. Notably, many of the top-ranked 
TFs associated with the early/late stage showed stepwise decreased/increased activity 
scores along the development timeline, such as Obox3 and Klf4 (Fig. 7d–f ). Together, 
these observations suggest that applying HyperChIP to samples from a time course 
experiment contributes to revealing regulators pertaining to the dynamics during the 
biological process.
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Discussion
Hypervariable ChIP/ATAC-seq analysis plays an essential role in large-scale epigenetic 
studies, considering its importance in dissecting the similarity structure among samples. 
In the study, we presented HyperChIP as the first complete statistical tool for the com-
putational task. HyperChIP accounts for the mean-variability dependence intrinsic to 
count data by fitting an MVC, and it increases the statistical power by selecting a subset 

Fig. 7  Applying HyperChIP to non-cancer ChIP/ATAC-seq data sets. a, b PCA results for the CTCF ChIP-seq 
data set, which comprised samples of 17 human LCLs with different populations of origin. PCA is performed 
either a with all peak regions or b with only the identified HVRs as features. c PCA results for the mouse 
ATAC-seq data set, which comprised samples of preimplantation embryos at different development stages 
and mESCs. Only the identified HVRs are used as features. d Heat map showing the TF activity scores of the 
top 30 binding motifs identified for the early/late-stage defined in c. e Bar plots showing the TF activity 
scores and expression levels of Rarg and Obox3, both of which are top-ranked TFs associated with the early 
stage. TF activity scores have been averaged across biological replicates for each individual cell stage. FPKM, 
fragments per kilobase of transcript per million fragments mapped. f Bar plots showing the TF activity scores 
and expression levels of Sox2 and Klf4, both of which are top-ranked TFs associated with the late stage
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of genomic regions with a low abundance of HVRs and LVRs and employing winsoriza-
tion in the parameter estimation procedure.

The specific hypervariable analysis method directly affects the reliability of various 
downstream analyses, including the interpretation of HVRs as well as the dissection of 
the similarity structure among samples. For the LUAD H3K27ac ChIP-seq data set, we 
found that the HVRs identified by HyperChIP were strongly associated with the different 
tumor progression stages of patients (Fig. 5f, g). Here, we applied each of the methods 
that were used in benchmarking HyperChIP to this analysis (the same number of top-
ranked proximal/distal HVRs as identified by HyperChIP was selected for each method). 
For these methods, the correlations of selected HVRs with tumor progression stage were 
either roughly as strong as observed from HyperChIP or weaker (Additional file 1: Fig. 
S16). We also applied these methods to the pan-cancer ATAC-seq data set and repeated 
the t-SNE analysis as presented in Fig. 6a. On the one hand, the two-dimensional t-SNE 
plots generated by different methods were similar to each other (Additional file 1: Fig. 
S17a-g). Based on the HVRs derived by each method (more precisely, the same principal 
components as used in the t-SNE analysis), we performed a classification of all samples 
and assessed their agreement with the cancer type labels by calculating the ARI. The 
ARI values achieved by different methods were close to each other as well (Additional 
file 1: Fig. S17h). On the other hand, HyperChIP showed better performance in revealing 
fine structures among the samples. For example, the kidney carcinoma class consisted of 
KIRC and KIRP samples. These samples were very close together in all the t-SNE plots, 
but only in the t-SNE plot generated by HyperChIP were the two cancer types clearly 
separated from each other (Additional file 1: Fig. S18a-g). Moreover, we performed clas-
sifications specifically for the KIRC and KIRP samples (the same features were used as in 
the previous classifications of all samples) and found that HyperChIP achieved the high-
est ARI in separating the two cancer types (Additional file 1: Fig. S18h). Similar results 
were also observed between the GBM and LGG types in the brain cancer class as well 
as between the colon adenocarcinoma (COAD) and stomach adenocarcinoma (STAD) 
types in the DIAD class (Additional file 1: Figs. S19, S20).

Throughout the entire study, we have strictly followed the criterion of separately han-
dling proximal and distal regions in all hypervariable ChIP/ATAC-seq analyses. In sum-
mary, the variability structure associated with proximal regions differs from that of distal 
regions in many respects, including the underlying mean-variance trend, the distribu-
tion of HVRs along the range of mean signal intensities, and the global variability mag-
nitude. Regarding the mean-variance trend, we have seen that the MVCs fitted for each 
of the data sets in Table 1 are distinct between proximal and distal regions (Additional 
file 1: Fig. S1). If we do not separate proximal and distal regions when applying Hyper-
ChIP, the MVC fitting procedure will have to compromise between the two classes of 
regions, which will influence not only the overall rankings of all peak regions but also 
the rankings within each class. Here, we tried applying HyperChIP to the data sets in 
Table 1 without separately handling proximal and distal regions. It was found that the 
rankings of proximal/distal regions became worse with respect to the consistency with 
HVGs and the resulting classifications of samples (Additional file 2: Note S2.1). We also 
examined the overall rankings of all peak regions, and we still observed that separating 
proximal and distal regions can bring an improvement in the performance of HyperChIP 



Page 20 of 31Chen et al. Genome Biology           (2022) 23:62 

(in which case the two classes of regions were ranked together based on their respective 
p-values or BH-adjusted p-values; Additional file 2: Note S2.2).

Regarding the global variability magnitude, the ChIP/ATAC-seq signal variability in 
distal regions is typically higher than that in proximal regions. Here, to provide a clear 
demonstration of this difference, we design a pipeline for comparing the global signal 
variability (across a given set of ChIP/ATAC-seq samples) between proximal and distal 
regions. Technically, we achieve it by comparing the variance ratio factors (denoted by 
γ) separately estimated from proximal and distal regions, while controlling for the MVC 
and the d0 parameter (refer to the HyperChIP model formulated by Eqs. (1) and (2)). 
In detail, we first process together proximal and distal regions in the normalization and 
MVC fitting procedures. Then, we set d0 to positive infinity and apply the winsoriza-
tion framework (see the “Methods” section) separately to proximal and distal regions 
to estimate γ (note that no selection of low-intensity regions is made). In this way, the γ 
estimate derived from proximal/distal regions represents the scaling factor of the MVC 
to reach the variance values observed at proximal/distal regions, and we can effectively 
compare the global signal variability between proximal and distal regions by compar-
ing the corresponding γ estimates. Applying this pipeline, we found that the γ estimate 
derived from proximal regions was smaller than that from distal regions for each of the 
data sets in Table 1 (Fig. 8a). We further split the pan-cancer ATAC-seq data set into 23 
small data sets corresponding to individual cancer types. Again, we observed a system-
atic increase in signal variability at distal regions compared to proximal regions (Fig. 8b). 
Together, these observations indicated the necessity of separately handling proximal and 
distal regions in hypervariable ChIP/ATAC-seq analysis.

Conclusions
HyperChIP has been presented as a complete statistical tool for identifying HVRs on 
ChIP/ATAC-seq samples. It uses local regression to adaptively capture the mean-vari-
ance relationship, which leads to better statistics for ranking HVRs compared to other 
existing ones. Specific efforts have been made to alleviate the influence of HVRs and 
LVRs on model fitting, which effectively increases the statistical power of HyperChIP. 
Case studies indicate that the HVRs identified by HyperChIP not only provide a solid 
basis to uncover the similarity structure among the involved samples, but can also con-
tribute to the identification of regulators pertaining to the similarity structure when cou-
pled with a motif-scanning procedure.

Methods
Data preprocessing

Processing of the mouse ATAC-seq samples, the RNA-seq samples associated with 
the data sets in Table 1, and all the ChIP-seq samples used in the study started with raw 
sequencing reads. We first used Trim Galore (v0.4.4) to trim 3′ ends of reads [60]. Result-
ing RNA-seq and ChIP/ATAC-seq reads were then aligned to the hg19/mm10 reference 
genome by STAR (v2.5.1b) and Bowtie (v1.2.2), respectively [61, 62]. To avoid artifacts 
from PCR amplification, we kept for each sample at most one read or read pair at each 
genomic location. The remaining reads or read pairs of each RNA-seq sample were then 
assigned to UCSC annotated genes [63] by htseq-count (v0.6.1p1) [64]. For the NSCLC 
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ATAC-seq samples, read alignments to hg19 (BAM-formatted files) were directly obtained 
from the corresponding study. Trimming of reads and removal of duplicates had already 
been done for these BAM files. For the pan-cancer ATAC-seq data set, a count matrix 
recording the read counts for each sample at a list of genomic regions was downloaded 
from the TCGA page https://​gdc.​cancer.​gov/​about-​data/​publi​catio​ns/​ATACs​eq-​AWG.

For the pan-cancer and mouse ATAC-seq data sets, the associated gene expression 
values, which were respectively CPM and FPKM values derived from RNA-seq data, 
were directly obtained from the corresponding studies. Accompanying input samples 
measuring background signals were available for all the ChIP-seq samples and were pro-
cessed in the same way as were the ChIP-seq samples.

Processing read alignments and calling peaks

For paired-end ChIP-seq and input samples, we converted each read pair into a single 
read whose 5′ end lay upstream of the associated DNA fragment center by 100 bp, with 
the fragment center inferred as the midpoint between the two 5′ ends of the read pair. 
For ATAC-seq read alignments, we shifted upstream each individual read by 100 bp. The 
whole process was for making the 5′ ends of all the resulting reads lie upstream of the 
presumed protein binding sites by a fixed distance.

Peak calling for each ChIP-seq sample was then performed against the corresponding 
input sample by using MACS (v1.4.2), with the parameters “--nomodel --shiftsize=100 
--keep-dup=all” [65]. For the NSCLC ATAC-seq samples, peaks were directly obtained 
from the corresponding study. For the mouse ATAC-seq samples, we used MACS 
(v1.4.2) with the same parameters, except that no input samples were provided. We also 
assessed the quality of each data set based on the distributions of peak numbers and 
fractions of reads in peaks (FRiPs) (see Additional file 2: Note S3 for details).

Input matrices for normalization

A count matrix and an occupancy matrix have been constructed for each data set. Rows 
and columns of both matrices corresponded to a list of genomic regions and the related 
ChIP/ATAC-seq samples, respectively. The count matrix recorded raw read counts. The 
occupancy matrix used binary variables to indicate whether each region was a peak 
region in each sample.

For all the data sets but the pan-cancer ATAC-seq one, the count and occupancy 
matrices were generated by invoking MAnorm2_utils (v1.0.0) [24] with the parameters 
“--typical-bin-size=X --shiftsize=100 --keep-dup=all --filter=blacklist” (X was set to 
2000 and 1000 for the H3K27ac ChIP-seq data set and the other data sets, respectively). 
The blacklisted regions for hg19/mm10 were obtained from Amemiya et al. [66]. For the 
pan-cancer ATAC-seq data set, the occupancy matrix was determined by considering 
the regions with > 50 read counts as peak regions.

For the two matrices associated with each data set, we then removed the genomic 
regions on sex chromosomes to avoid the influence of different biological sexes. We also 
classified the remaining regions into proximal and distal ones and accordingly split each 
matrix. Technically, each region with a distance less than 5 kb to any (UCSC annotated) 
transcription start site was considered proximal, and it was considered distal otherwise 
(see Additional file 2: Note S4 for a detailed discussion of this distance cutoff). Unless 

https://gdc.cancer.gov/about-data/publications/ATACseq-AWG
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otherwise stated, each normalization/hypervariable analysis targeting an individual data 
set has separately handled proximal and distal regions.

Normalization

We detail here the method used in the study for deriving normalized log2 read counts 
as input data of HyperChIP. Given a count matrix and an occupancy matrix, suppose Kij 
is the read count at region i in sample j and that Oij indicates the associated occupancy 
status. Each Oij takes a value of 0 or 1, and Oij = 1 indicates region i is a peak region in 
sample j (or region i is occupied by sample j). Define Yij = log2(Kij + 0.5).

To normalize the samples, we first construct a pseudo-reference profile as normaliza-
tion baseline, which is defined by:

The above definition is for notational convenience. In fact, the Pi with which the asso-
ciated ∑jOij are 0 will never be used in the subsequent normalization procedures.

We next repeatedly normalize each sample against the baseline. Technically, the nor-
malization of sample j is accomplished by applying a linear transformation to all the cor-
responding Yij. Formally, let Xij = αj + βjYij be normalized log2 read counts, where αj and 
βj are coefficients to be determined. For notational simplicity, we further define M and 
A values as Mij = Xij − Pi and Aij = (Pi + Xij)/2, respectively, and define nj = ∑iOij to be the 
total number of regions that are occupied by sample j. The two coefficients are deter-
mined by imposing the following two constraints:

Intrinsically, the above two constraints are for simultaneously removing the global sig-
nal difference and M-A trend at common peak regions of sample j and the pseudo-refer-
ence profile. Solutions for αj and βj are given by:

(4)Pi =

{

∑

j OijYij
∑

j Oij

∑

jOij > 0,

0
∑

jOij = 0.

(5)
∑

i:Oij=1

Mij = 0,

(6)
∑

i:Oij=1

(

Mij −

∑
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nj

)(
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)

= 0.
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∑
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,
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√
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√
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∑
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.
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Parameter estimation for the HyperChIP model

The whole model formulation of HyperChIP as well as the associated hypothesis testing 
procedure is given by the Eqs. (1), (2), and (3). Here, we detail the method for estimating 
d0 and γ.

We first explain the application of the winsorization technique. The idea is similar to 
robust limma [67], and we apply moment estimation to winsorized log-scaled variances. 
Formally, let zi = log t̂i

f (µ̂i)
 be the log-scaled variance associated with region i. Set pl and 

pu to two small values representing the maximum proportions of outliers allowed in the 
lower and upper tails of all zi, respectively (in the study, pl = 0.01 and pu = 0.1 were 
always used). Let ql and qu be the corresponding lower and upper sample quantiles of zi, 
respectively. Then, winsorized zi are defined by:

Based on the model, it approximately follows:

Note that, in contrast with the winsorization of zi, the winsorization of Fm−1,d0 in the 
above formula refers to squeezing certain proportions at two tails of the probability den-
sity function towards the corresponding theoretical quantiles, which results in a mixture 
of a continuous distribution with a bounded support domain and two point masses at 
the edges.

We next apply a moment estimation approach. It follows from Eq. (10):

The approach is to first solve Eq. (12) for d0 and then solve Eq. (11) for γ. Technically, 
given d0, the expectation and variance on the right-hand sides of (Eqs. (11) and (12)) , 
respectively, are calculated by turning to Gauss-Legendre quadrature [68], and Eq. (12) is 
solved by applying the bisection method.

Besides using winsorization, HyperChIP also makes a selection of low-intensity 
regions for parameter estimation. By default, the above winsorization process is only 
applied to the zi of the 10% of regions with the smallest µ̂i.

Applying other methods for ranking HVRs

For the methods that do not consider the mean-variability dependence, the associated 
variability statistics, including observed variance, MAD, and IQR, were calculated from 
the same normalized log2 read counts as used by HyperChIP. For the min-rank method, 
it was applied to the same normalized data as well. For the method that uses a moder-
ately large offset when applying a log2 transformation, we followed the computational 
pipeline presented in the original study [17]. More specifically, we first derived log2-CPM 

(9)win(zi; pl , pu) =







ql zi ≤ ql ,
zi ql < zi < qu,
qu zi ≥ qu.

(10)win(zi; pl , pu) ∼ log γ + log
[

win
(

Fm−1,d0; pl , pu
)]

.

(11)E[win(zi; pl , pu)] = log γ + E
{

log
[

win
(

Fm−1,d0; pl , pu
)]}

,

(12)var [win(zi; pl , pu)] = var
{

log
[

win
(

Fm−1,d0; pl , pu
)]}

.
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values by using the cpm function of the edgeR package [69], with setting log=TRUE and 
prior.count to a large value (5 or 10 in this study). We then applied quantile normaliza-
tion to the log2-CPM values and calculated the observed variance associated with each 
region. Finally, these variances were used to rank HVRs.

Identifying HVGs

We identified HVGs separately for each data set in Table  1, by applying limma trend 
[23, 70] to the corresponding RNA-seq samples. Technically, we first converted RNA-
seq read counts into log2-CPM values by using the calcNormFactors and cpm functions 
of the edgeR package, with log=TRUE for the latter. Then, the standard limma pipeline 
[71] was applied to the log2-CPM values, with trend=TRUE for the eBayes function 
(note that the design matrix contained only an intercept variable). The ratios of sample 
variances to prior variances were then used as key statistics for identifying HVGs, and 
we applied a one-sided p-value cutoff of 0.05.

Classification of the NSCLC ATAC‑seq samples

Each classification of the samples was performed by using a set of top-ranked proximal/
distal HVRs derived by some method as features. For all the methods but the large-offset 
one, we first separately scaled the normalized log2 read counts associated with each fea-
ture. For the large-offset method, the normalized data bound with it were directly used 
for the subsequent clustering analysis [17]. Then, we calculated the Euclidean distance 
between each pair of samples and performed a hierarchical clustering by using the hclust 
function of the R software [72], with method=“ward.D”. Finally, the resulting hierarchi-
cal tree was cut into two branches, and we assessed the agreement of this classification 
with the subtype labels (LUAD or LUSC) by calculating the ARI, which was achieved by 
using the adjustedRandIndex function of the mclust package [73].

Biological interpretation of the significant HVRs and LVRs identified for the LUAD H3K27ac 

ChIP‑seq data set

For the GO enrichment analysis, GO terms for biological processes were obtained from 
the Molecular Signatures Database (MSigDB) [74]. Enrichments of GO terms were 
assessed by performing Fisher’s exact tests, with all the proximal H3K27ac peak region-
associated genes as background.

For the histopathological labels of the LUAD patients, we first made a classification 
based on the most prevalent histologic pattern of each patient, which was lepidic, papil-
lary, acinar, or solid [75]. According to the original study [6], we then specified the histo-
pathological labels of the lepidic-prevalent and solid-prevalent patients as low-risk and 
high-risk, respectively, and the remaining patients were considered median-risk. Finally, 
we ranked all patients based on their risk levels and quantified the Spearman correla-
tions of H3K27ac ChIP-seq signals in different regions with the risk levels.

We also separately performed a regression of the survival time of the patients on the 
H3K27ac ChIP-seq signals in each region, by fitting a Cox proportional hazards model 
[41]. Technically, this was achieved by using the CoxPHFitter function of the lifelines 
package [76], and we used the (two-sided) p-value associated with each model to evaluate 
the prognostic association of the corresponding region. For the hierarchical clustering of 
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the patients, we followed the same pipeline as used for classifying the NSCLC ATAC-seq 
samples, except that the proximal and distal HVRs were used together as features. Test-
ing the survival difference between the resulting two subgroups was achieved by using 
the survdiff function of the survival package [77].

The phastCons scores for assessing the sequence conservation of different regions 
were obtained from the phastCons100way.UCSC.hg19 package [36]. Each base with a 
phastCons score over 0.9 was considered conserved.

Identifying ATAC‑seq QTLs

For the NSCLC ATAC-seq data set, among the germline SNPs located within the peak 
regions, we have identified QTLs whose different genotypes were associated with sig-
nificantly differential ATAC-seq signals in the enclosing peak region. For this analysis, 
we first noticed that all the SNPs were associated with exactly two different genotypes 
across the individuals, referred to as reference and alternative genotypes. To increase the 
statistical power, we filtered out the SNPs whose reference or alternative genotype was 
associated with less than 5 individuals. Then, for each remaining SNP, we performed a 
two-sample t-test between the ATAC-seq signals (i.e., the normalized log2 read counts 
used by HyperChIP) associated with the two genotypes. Finally, the SNPs with a BH-
adjusted p-value less than 0.1 were considered as significant QTLs.

Analysis of the pan‑cancer ATAC‑seq data set

For the t-SNE analysis, we first separately scaled the ATAC-seq signals at each significant 
HVR. Formally, suppose Xij is the normalized log2 read count at HVR i in sample j. Let 
Xi∙ = (Xi1, Xi2, ⋯) be the vector of normalized log2 read counts at HVR i in all the samples. 
We define:

where mean and sd refer to the sample mean and sample standard deviation, respec-
tively. Let Z∙j = (Z1j, Z2j, ⋯) be the scaled ATAC-seq signals at all the HVRs in sample j. 
We then performed a PCA by using Z∙j as the features of sample j. Finally, the t-SNE 
routine implemented in the Rtsne package [78] was applied to the first 50 principal com-
ponents, which led to the two-dimensional t-SNE plot.

For the identification of class-specific regulators, we first performed a motif-scanning 
analysis by using the matchMotifs function of the motifmatchr package [46] with default 
settings. Let Imi indicate whether HVR i contains an instance of motif m. Each Imi takes 
a value of 0 or 1. Then, we defined the activity score of each motif m in each sample j as:

where the sum operators are applied to all the HVRs and the subtraction is for adjust-
ing for sample-specific biases. Finally, for each of the four classes of cancer types, we 
performed a two-sample t-test for each motif to compare its activity scores between the 
samples belonging to the class and the other samples.

(13)Zij =
Xij −mean(Xi·)

sd(Xi·)
,

(14)Smj =

∑

i Imi

(

Zij −mean
(

Z·j

))

∑

i Imi
,
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Analysis of the non‑cancer data sets

For the CTCF ChIP-seq data set of human LCLs as well as the ATAC-seq data set of 
mouse preimplantation embryos and mESCs, PCA was performed based on the same 
procedure as used for the pan-cancer ATAC-seq data set. For the mouse ATAC-seq data 
set, the identification of early/late stage-specific regulators was achieved by following 
the same pipeline as applied to the pan-cancer ATAC-seq data set, except that binding 
motifs of mouse TFs instead of human ones were used.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13059-​022-​02627-9.

Additional file 1: Figure S1. Scatter plots showing various mean-variance trends associated with different data sets. 
Variance is shown at the log10 scale. Red lines depict the corresponding MVCs. Red points mark the 1000 regions 
with the largest scaled variances. Figure S2. Scatter plots of log10 scaled variances against observed mean signal 
intensities for different data sets. Red points mark the 1000 regions with the largest scaled variances. Figure S3. 
Applying other methods for ranking genomic regions and selecting HVRs. (a-c) Scatter plots showing the 
mean-variance trend (at proximal regions) associated with the H3K27ac ChIP-seq data set as well as the regions that 
are ranked in the top 1000 HVRs by each method (marked by red points). MAD, median absolute deviation; IQR, 
interquartile range. Figure S4. Identifying HVGs. We have separately identified HVGs for each data set in Table 1, by 
applying limma-trend to the corresponding RNA-seq data (see Methods in the main text for details). Scatter plots 
shown here demonstrate the modeling of the mean-variance relationships by limma-trend. Red points in each plot 
mark the identified HVGs. CPM, count per million; SD, standard deviation. Figure S5. Selecting a subset of genomic 
regions and using Winsorization for parameter estimation. (a) For the ATAC-seq and Pol II ChIP-seq data sets, bar plots 
showing the distributions of top-ranked proximal/distal HVRs along the range of mean intensities. For each data set, 
proximal and distal regions have been separately divided into 10 equally-sized groups based on the observed mean 
signal intensities. (b) Bar plots showing the distributions of top-ranked proximal/distal LVRs along the range of mean 
intensities. (c) d0 estimates resulting from different parameter estimation methods. Inf refers to positive infinity. 
Figure S6. The distributions of top-ranked proximal HVRs and LVRs associated with the Pol II ChIP-seq data set. The 
top-ranked LVRs form two clusters that are somewhat separated from one another in the mean-variance scatter plot, 
owing to a gap (indicated by the area circled in green) largely corresponding to the 70th to 90th percentile of mean 
intensities. As a result, the proportion of the LVRs dips at the corresponding two groups of regions, leading to a 
bimodal distribution profile as well as a rise in the HVR proportion that is more dramatic compared to the other two 
data sets. Figure S7. Evaluating the prognostic associations of different genomic regions. (a, b) Proximal/distal HVRs 
are more significantly associated with the survival time of patients than proximal/distal LVRs and randomly selected 
proximal/distal peak regions. Results shown here are based on the H3K27ac ChIP-seq data set. The p-values are 
derived by separately performing a Cox regression on the H3K27ac level in each region. (c) Dendrogram showing 
the hierarchical clustering of the patients based on the proximal and distal HVRs. The patients are classified into two 
sub-groups, labeled C1 and C2. (d) There is a significant survival difference between C1 and C2. Figure S8. HVRs 
have a significant association with somatic copy number variation (CNV). (a, b) Proximal/distal HVRs are more likely 
to be associated with somatic CNV than randomly selected proximal/distal peak regions. Results shown here are 
based on the ATAC-seq data set. For this data set, the genomic segments with somatic CNV in at least one patient 
together occupied almost the whole genome (>95%). We therefore considered a region as associated with somatic 
CNV only if it overlapped CNV segments in more than 5 patients. 1,000 random simulations were performed 
separately for proximal and distal peak regions. In each time, we randomly selected the same number of proximal/
distal peak regions as that of the proximal/distal HVRs. Figure S9. HVRs contain significantly more germline SNPs 
than by chance. (a) Proximal HVRs identified for the ATAC-seq data set are enriched with germline SNPs. We have 
performed 1,000 times of random simulation. In each time, a set of proximal peak regions matching the number of 
the HVRs has been randomly selected. (b) Distal HVRs are enriched with germline SNPs as well. Figure S10. 
Association between QTLs and HVRs. (a, b) Identifying QTLs among the germline SNPs located within ATAC-seq peak 
regions. Each (BH-adjusted) p-value assesses the statistical significance of the association between the genotype of a 
SNP and the ATAC-seq signal in the peak region containing it. (c) Box plots showing the ATAC-seq signals associated 
with different genotypes of the most significant QTL, which is located within a proximal HVR. Ref and Alt refer to the 
reference genotype and the alternative one, respectively. (d) Box plots showing the RNA-seq signals of the 
downstream gene of the proximal HVR. (e) Box plots showing the ATAC-seq signals associated with different 
genotypes of the most significant distal QTL, which is also located within an HVR. (f ) Box plots showing the RNA-seq 
signals of the gene nearest to the distal HVR. Figure S11. For the TCGA pan-cancer ATAC-seq data set, two-dimen-
sional t-SNE plots showing the distribution of BRCA patients. These patients are comprised of 14 basal and 61 
non-basal cases. Figure S12. HNF1A is identified as a top-ranked TF for the kidney carcinoma class. (a) Plotting the 
t-statistics of all motifs against their rankings in the identification of TFs specific to the kidney carcinoma class. (b) 
Mapping the TF activity scores associated with the HNF1A.1 motif to the t-SNE plot. (c) Mapping the expression 
levels of the HNF1A gene to the t-SNE plot. (d) Box plots showing the expression of HNF1A in a larger TCGA cohort of 
patients. TPM, transcripts per million. Figure S13. TP73 is identified as a top-ranked TF for the SC class. (a) Mapping 
the TF activity scores associated with the TP73 motif to the t-SNE plot. (b) Mapping the expression levels of the TP73 
gene to the t-SNE plot. (c) Box plots showing the expression of TP73 in the larger TCGA cohort. Figure S14. RFX4 
ranks first among the brain cancer class-specific TFs. (a) Plotting the t-statistics of all motifs against their rankings in 
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the identification of TFs specific to the brain cancer class. (b) Mapping the TF activity scores associated with the RFX4 
motif to the t-SNE plot. (c) Mapping the expression levels of the RFX4 gene to the t-SNE plot. (d) Box plots showing 
the expression of RFX4 in the larger TCGA cohort as well as in 3,006 RNA-seq samples of normal individuals provided 
by the GTEx (Genotype-Tissue Expression) project (https://​gtexp​ortal.​org/​home/). We involved the GTEx data 
because RNA-seq samples for matched normal tissues of GBM and LGG were missing in the TCGA program. Figure 
S15. Examples of stage-specific regulators identified from the mouse ATAC-seq data set. (a, b) Bar plots showing the 
TF activity scores and expression levels of (a) Nr5a2 and (b) Gbx2, which are top-ranked TFs associated with the early 
and late stages, respectively. TF activity scores have been averaged across biological replicates for each individual cell 
stage. Figure S16. Evaluating the correlations of HVRs identified by different methods with tumor progression stage. 
(a, b) Results shown here are based on the LUAD H3K27ac ChIP-seq data set. For each method, the same number of 
top-ranked proximal/distal HVRs as identified by HyperChIP are selected. The red dotted line in each plot indicates 
the median correlation of the HVRs identified by HyperChIP. Figure S17. Applying different methods to the 
pan-cancer ATAC-seq data set. (ag) Two-dimensional t-SNE plots generated by different methods. For each method, 
the same number of top-ranked proximal/distal HVRs as identified by HyperChIP were used for the downstream PCA 
and t-SNE analysis (see Methods in the main text). (h) Bar plot showing the ARI values achieved by different methods 
in classifying all samples. For each method, we performed a hierarchical clustering of all samples based on the same 
principal components as used in the t-SNE analysis. The samples were then classified into 23 sub-groups based on 
the resulting hierarchical tree, and the corresponding ARI assessed the agreement of this classification with the 
cancer type labels. The red dotted line indicates the ARI value achieved by HyperChIP. Figure S18. Evaluating the 
ability of different methods to distinguish between the KIRC and KIRP cancer types. (a-g) Zooming in on the t-SNE 
plots to more clearly present the distributions of KIRC and KIRP samples. (h) Bar plot showing the ARI values achieved 
by different methods in classifying KIRC and KIRP samples. For each method, we performed a hierarchical clustering 
of KIRC and KIRP samples and classified them into two sub-groups based on the resulting hierarchical tree. Figure 
S19. Evaluating the ability of different methods to distinguish between the GBM and LGG cancer types. (a-g) 
Zooming in on the t-SNE plots to more clearly present the distributions of GBM and LGG samples. (h) Bar plot 
showing the ARI values achieved by different methods in classifying GBM and LGG samples. For each method, we 
performed a hierarchical clustering of GBM and LGG samples and classified them into two sub-groups based on the 
resulting hierarchical tree. Figure S20. Evaluating the ability of different methods to distinguish between the COAD 
and STAD cancer types. (a-g) Zooming in on the t-SNE plots to more clearly present the distributions of COAD and 
STAD samples. (h) Bar plot showing the ARI values achieved by different methods in classifying COAD and STAD 
samples. For each method, we performed a hierarchical clustering of COAD and STAD samples and classified them 
into two sub-groups based on the resulting hierarchical tree.

Additional file 2: Note S1. Statistical simulation. Note S2. Applying HyperChIP without separating proximal and 
distal regions. S2.1. Evaluating separately the rankings of proximal and distal regions. S2.2. Evaluating the overall 
rankings of all peak regions. Note S3. Quality control. Note S4. Defining proximal and distal regions.

Additional file 3: Table S1. Top 20 GO terms enriched from the genes linked with the significant proximal LVRs 
identified for the H3K27ac ChIP-seq data set. Table S2. Top 20 GO terms enriched from the genes linked with the 
significant proximal HVRs identified for the H3K27ac ChIP-seq data set. Table S3. Cancer types involved in the TCGA 
ATAC-seq data set. Note that in TCGA studies the abbreviation CESC refers to both cervical squamous cell carcinoma 
and endocervical adenocarcinoma, but all the 4 CESC patients in this data set belong in the former. Note also that 
the 18 ESCA patients in this data set consist of 12 ESSC (esophageal squamous cell carcinoma) and 6 ESAD (esopha-
geal adenocarcinoma) cases, which belong in the SC and DIAD classes, respectively. SC, squamous cell carcinoma; 
DIAD, digestive adenocarcinoma.

Additional file 4: Table S4. Class-specific regulators identified from the TCGA pan-cancer ATAC-seq data set.

Additional file 5: Table S5. Stage-specific regulators identified from the mouse ATAC-seq data set.

Additional file 6: Table S6. Significant HVRs and LVRs (BH-adjusted p-value<0.1) identified by HyperChIP for each of 
the data sets in Table 1.
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