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ABSTRACT 

High-throughput technology has become a powerful approach for routine plant research. 

Interpreting the biological significance of high-throughput data has largely focused on the 

functional characterization of a large gene list or genomic loci, which involves the following 

two aspects: the functions of the genes or loci and how they are regulated as a whole, i.e. 

searching for the upstream regulators. Traditional platforms for functional annotation largely 

help resolving the first issue. Addressing the second issue is essential for a global 

understanding of the regulatory mechanism, but is more challenging, which requires 

additional high-throughput experimental evidence and a unified statistical framework for 

data-mining. The rapid accumulation of omics data provides a large amount of 

experimental data. We herein present Plant Regulomics, which integrates 19,925 

transcriptomic and epigenomic data sets and diverse sources of functional evidence 

(58,112 terms and 695,414 protein-protein interactions) from six plant species along with 

the orthologous genes from 56 whole-genome sequenced plant species. All pair-wise 

transcriptomic comparisons with biological significance within the same study were 

performed, and all epigenomic data were processed to genomic loci targeted by various 

factors. These data were well-organized to gene modules and loci lists, which were further 

implemented into the same statistical framework. For any input gene list or genomic loci, 

Plant Regulomics retrieves the upstream factors, treatments, and 

experimental/environmental conditions regulating the input from the integrated omics 

data. Additionally, multiple tools and an interactive visualization are available through a 

user-friendly web interface. Plant Regulomics is available at 

http://bioinfo.sibs.ac.cn/plant-regulomics. 

 

INTRODUCTION 

With the rapid release of whole-genome sequences from various plant species, 

high-throughput technology has become a routine approach for plant research. However, 

interpreting the biological significance from high-throughput data is challenging. The 

central requirement is to deduce reliable functional information and regulatory network 

details from large gene lists and genomic loci derived from high-throughput technologies. 

Traditional way for high-throughput functional dissection of a gene list or genomic loci 

focused on the role of these genes or loci. The basic idea is to find the common domains 

(Hunter et al., 2009), pathways (Kanehisa and Goto, 2000), or functional terms 
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(Ashburner et al., 2000) shared by these genes or genes nearby the genomic loci. While 

the regulatory information about how these genes or loci are affected overall by other 

factors or perturbations is important, it is difficult to investigate. For example, it is 

relatively easy to obtain information about the major roles of a set of genes based on the 

enriched functional terms, but deducing the upstream factors regulating these genes may 

be problematic, because it requires additional high-throughput experimental evidence and 

a unified statistical framework for efficient data-mining.  

The accumulation of plant omics data provides considerable experimental 

information for mechanistic investigations, and is a promising development for the 

exploration of upstream factors based on the newly generated data. For example, 

differentially expressed gene sets derived from transcriptomic comparisons represent 

genes with consistent responses to a specific treatment or perturbation. Genes commonly 

targeted by the same transcription factor (TF) according to chromatin 

immunoprecipitation sequencing (ChIP-seq) or DNA affinity 

purification sequencing (DAP-seq) experiments are more likely to be co-regulated by a 

given TF. Additionally, genes affected by a series of polymorphisms associated with a 

certain trait identified from genome-wide association studies tend to co-regulate the trait 

of interest. Moreover, if one protein interacting with a large fraction of a list of genes, it is 

most likely that the protein is one key regulator of the gene list. However, integrating 

publicly available high-throughput data to annotate newly generated data can be difficult. 

The major challenge is ensuring data from different studies and platforms comparable. A 

gene-set oriented approach, based on a group of relevant genes instead of an individual 

gene, has increased the chances of identifying the correct biological processes, and has 

become an essential part of current genomic analyses. For example, DAVID 

Bioinformatics Resources (Huang et al., 2007), Molecular Signatures Database (MsigDB) 

(Liberzon et al., 2011), and Metascape (Tripathi et al., 2015), which are the most popular 

web-based platforms for the functional characterization of high-throughput data for 

animals, are based on the comprehensive collection and curation of gene-sets representing 

diverse biological processes. Major plant functional exploration platforms, including 

plantGSEA (Yi et al., 2013) and AgriGO (Du et al., 2010), are also gene-set oriented. 

However, the available tools for plants are mostly based on a homology with sequences or 

domains whose functions have been well-characterized in a few model plants. Given the 

common phenomenon of genome-level duplications followed by myriad fractionation 

processes in plants (Jiao et al., 2011, Wendel et al., 2016), functional dissections based 
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only on sequence homologies are far from accurate. Additionally, the current platforms in 

plants is focused on determining the function of input genes instead of how they are 

regulated. Thus, applying a gene-set oriented approach to integrate direct experimental 

evidence from high-throughput data and developing reliable tools for exploring the 

upstream regulatory factors from multi-omics data are critical. 

In addition to genes, it is now well-acknowledged that the regulatory elements 

present in intergenic regions are indispensable for determining phenotypes. For example, 

a systematic survey of human GWAS variants revealed a vast majority of common 

disease-associated variations lie within intergenic regulatory elements, which 

preferentially comprise regulatory epigenetic marks and TFs (Maurano et al., 2012). On 

the basis of ChIP-seq experiments, genomic loci commonly targeted by specific factors 

contain important regulatory elements working in concert. However, analyses of these 

types of loci were mostly restricted to the function of nearby genes. Directly comparing 

these loci may provide more regulatory information, and the most challenging issue 

involves statistically comparing the significance of the overlap between loci derived from 

different studies and different platforms.  

In this study, we present Plant Regulomics, which is a platform for retrieving 

upstream regulators from multi-omics data for 62 whole-genome sequenced plant species. 

A total of 19,043 transcriptomic and 1,694 epigenomic data sets from public databases 

were processed following a unified pipeline. All pair-wise transcriptomic comparisons with 

biological significance within the same study were performed, and all epigenomic data were 

processed to genomic loci targeted by various factors. These data sets were further 

organized to gene sets and genomic loci potentially involved in the same biological 

processes. The data analyses were integrated into the same statistical framework, which 

enabled cross-platform and cross-study comparisons. We further illustrate the features of 

Plant Regulomics using four examples, demonstrating that Plant Regulomics is a highly 

useful interface for the intensive data-mining of plants.  
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RESULTS 

Plant Regulomics scheme 

Figure 1 presents the data integration process and the operating principle of Plant Regulomics. 

Briefly, 19,043 transcriptomic and 1,694 epigenomic data sets characterizing the binding 

patterns of TFs and epigenetic factors in six species (A. thaliana, O. sativa, Z. mays, G. max, 

S. lycopersicum and T. aestivum) were collected from the GEO (Barrett et al., 2013), 

NASCArrays (Craigon et al., 2004) and DDBJ (Mashima et al., 2016) databases. These data 

were further processed, resulting in 12,070 differentially expressed gene sets, which were 

derived from all pair-wise transcriptomic comparisons with biological significance within the 

same study, as well as 1,691 gene sets or genomic loci targeted by TFs and epigenetic factors. 

A total of 695,414 protein-protein interactions from three species including A. thaliana, O. 

sativa and Z. mays were downloaded from TAIR (Huala et al., 2001, Lamesch et al., 2012), 

BioGRID (Stark et al., 2006, Oughtred et al., 2018), DIPOS (Sapkota et al., 2011), PRIN (Gu 

et al., 2011) and PPIM (Zhu et al., 2016). Orthologous gene pairs between five reference 

species (A. thaliana, O. sativa, Z. mays, G. max, and S. lycopersicum) and another 56 

whole-genome sequenced species were incorporated. Supplemental Table 1 summarizes the 

data collection statistics. For any input gene list or genomic loci, Plant Regulomics returns 

the TFs, epigenetic factors, cis-elements, protein interactors, perturbation of genes, and 

experimental/environmental conditions regulating the input list. The omics data can be 

further visualized via a customized genome browser. 

Case Studies 

Case study 1. Searching for upstream regulators for single gene  

The typical feature of Plant Regulomics involves the detection of treatments or perturbations, 

trans-acting factors, and cis-elements regulating the input gene(s) or locus/loci. We illustrate 

searching for upstream regulators for single gene using FLOWERING LOCUS T (FT) (Figure 

2A) as the input. This gene is essential for promoting flowering in response to day-length 

changes (Turck et al., 2008). Figure 2B lists the treatments, mutants, or ecotypes affecting FT 

expression, as well as the statistics for the transcriptional changes. The expression of FT is 

primarily regulated by day-length and light density (Figure 2B), which has been 

well-documented (Kardailsky et al., 1999, Kim et al., 2008). Factors affecting FT expression 

include ABI1, ABA1, LHP1, LFY, AP3, and COP1 (Figure 2B), some of which have been 
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confirmed by previous experiments (O'Maoileidigh et al., 2014, Riboni et al., 2016). Three 

types of cis-elements were present in the FT promoter region (Figure 2C), including those 

potentially bound by MADS box factors, C2H2 zinc finger factors, and the AP2/ERF domain. 

Some factors from these TF families are typically involved in flowering and floral 

development (Wellmer et al., 2006). Figure 2D lists the TFs and epigenetic marks enriched at 

the FT locus, including LHP1, LHY, TRB1, and WRKY family TFs and the H3K27me3 

modification. Previous studies revealed that LHP1 and TRB1 are the central components 

responsible for recruiting Polycomb group proteins catalyzing the H3K27me3 reaction 

(Turck et al., 2007, Zhang et al., 2007, Zhou et al., 2018). This result is consistent with those 

of previous studies that indicated the activation of FT is counteracted by LHP1-mediated 

H3K27me3 (Adrian et al., 2010, Farrona et al., 2011). The genomic track in Figure 2E 

illustrates the co-occupancy of these factors or epigenetic marks surrounding the FT locus. 

Figure 2F listed three proteins interacting with FT. The interactions between GI 

(AT1G22770), AJH1 (AT1G22920), ATBIZP27 (AT2G17770) and FT have been reported 

previously (Abe et al., 2005, Mizoguchi et al., 2005, Arabidopsis Interactome Mapping 

Consortium, 2011). All interactors were listed in Supplemental Table 2.  

Case study 2. Searching for upstream regulators for gene list  

We illustrate the application of the platform for searching upstream regulators for the  

ABA-induced genes previously published (Figure 3A) (Song et al., 2016). The input gene list 

was compared with all 18,155 gene sets integrated in the database. Figure 3B lists the top 

enriched transcriptomic comparisons; the input genes were enriched for the genes whose 

expressions are affected by these transcriptomic comparisons, including those involving ABA 

treatments with the ABA-related hormones phaseic acid (PA) and dexamethasone (DEX), as 

well as abiotic stresses, including darkness, drought, salt, and injury. These results are 

consistent with the essential role of ABA in plant responses to abiotic stimuli (Figure 3B). 

The genes on the input list are preferentially expressed in dry seeds (Figure 3C), consistent 

with the essential role of ABA in seed dormancy (Finkelstein et al., 2008). The top enriched 

TFs binding the loci surrounding these genes are ABA-related, including ABI5, ABF4, ABF1, 

ANAC102, HSFA6A, FBH3 and ERF48 as determined by ChIP-seq and DAP-seq (Figure 

3D). The motifs over-represented in these genes were divided into two classes, namely 

AP2/ERF type motif and bHLH/G-box motif (Figure 3F), both of which are major 

cis-elements regulating ABA responses (Shen and Ho, 1995). It is worth noting that a large 

proportion of the input genes were enriched for H3K27me3 marks (Figure 3D, E). This is 
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consistent with a recent report stating that H3K27me3 is responsible for attenuating 

ABA-induced senescence (Liu et al., 2018). Figure 3G displayed the interactors associated 

with user input genes sorted by the number of interactions, which are the potential hub 

regulators of input genes. The top five interactors are shown here and all interactors could be 

downloaded. Among the top interactors, UBIQUITIN-CONJUGATING ENZYME 34 

(UBC34, AT1G17280) is well-acknowledged to play negative role in drought response (Ahn 

et al., 2018), and it is interesting to examine whether the input genes interacting with UBC34 

are subjected to ubiquitination-mediated degradation pathway and the association with stress 

responses.  

Case study 3. Searching for upstream regulators of genomic loci 

To illustrate the application of searching for upstream regulators of genomic loci, the 

previously published ChIP-seq peaks of PRR7 were used as the input (Liu et al., 2013) 

(Figure 4A, B); PRR7 is the central day-phased circadian factor with thousands of target loci. 

A comparison with ChIP-seq data integrated in Plant Regulomics revealed that 8 factors 

shared a significant proportion of target loci with PRR7 (Figure 4C), most of which are 

involved in light signaling, including PHYA, HY5, PIFs, TOC1, and LHY. The common and 

unique genes targeted by user-selected factors may be further visualized with a heatmap. The 

genomic track in Figure 4D illustrates the co-occupation of PRR7 and other factors. The top 

over-represented motifs of the PRR7-binding loci included bZIP and bHLH factors (Figure 

4E). The nearby genes potentially targeted by input loci were downloaded (Figure 4A), 

whose function were further explored via gene list annotation implemented in Plant 

Regulomics. The PRR7 targets are mainly associated with photosynthesis and chloroplast 

development (Figure 4F). Consistently, the top enriched transcriptomic comparisons involved 

light treatments (Figure 4G). A closer examination of the transcriptomic comparisons of 

mutants revealed that the expression levels of the PRR7 targets are preferentially 

up-regulated in the PRR5,7,9 triple mutant (Figure 4G). These observations suggested that 

PRRs are responsible for repressing light-induced photosynthesis, confirming a previously 

proposed hypothesis (Fukushima et al., 2009). 
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Case study 4. Gene expression pattern of orthologous genes 

To illustrate the application of an analysis of orthologous genes, we used pathogen-induced 

poplar genes as the input (Azaiez et al., 2009), with A. thaliana and O. sativa serving as 

reference species (Figure 5A). The enriched transcriptomic comparisons were further 

clustered based on relevance (Method) (Figure 5B and Supplemental Table 3). The top 

enriched clusters in both A. thaliana and O. sativa included the transcriptomic changes 

induced by pathogens, as well as changes affected by the deprivation of specific factors 

involved in pathogen response. These results indicated that the functions of genes in these 

clusters are evolutionarily conserved. We next used maize pollen-specific genes as the input, 

and observed that the orthologous genes in O. sativa exhibited an apparent anther-biased 

expression, while the tissue specificity of the orthologous A. thaliana genes was unclear 

(Figure 5C and Supplemental Figure 1). This distinct tissue-biased expression pattern 

suggested pollen development differs between monocotyledonous and dicotyledonous plant 

species (Wilson and Zhang, 2009). Thus, a comparison of high-throughput data across 

species implemented in Plant Regulomics provides insightful clues from an evolutionary 

perspective.  

Comparison of Plant Regulomics with other similar tools 

We summarized the typical features of Plant Regulomics with other popular web-based 

databases or tools for plant gene annotation in Supplemental Table 4, including Gene-Sharing 

Networks (Li et al., 2012), AraPath (Lai et al., 2012), ShinyGO (Ge and Jung, 2018), 

AtCAST (Kakei and Shimada, 2014), AIV2 (Dong et al., 2019), ePlant (Waese et al., 2017), 

Expressolog TreeViewer (Patel et al., 2012) and GENEVESTIGATOR (Zimmermann et al., 

2004, Hruz et al., 2008). 

DISCUSSION 

Plant Regulomics focused on retrieving the upstream regulators, which is different from 

traditional platforms from the following aspects: Firstly, it is a data-driven platform. To 

understand how a gene or gene list is regulated requires comprehensive collection and 

organization of available experimental evidence. Instead of mere electronic annotation based 

on sequence homology with well-characterized genes or domains, Plant Regulomics 

integrates thousands sets of high throughput data from 6 plant species and corresponding 

orthologous genes from 56 whole-genome sequenced plant species. For any input gene list or 
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genomic loci, Plant Regulomics retrieves the factors, treatments, and 

experimental/environmental conditions regulating the input from the integrated omics data. 

Secondly, it provides a unified statistical framework which facilitates cross-platform and 

cross-study comparisons. All pair-wise transcriptomic comparisons with biological 

significance within the same study were performed, which were further organized to gene 

sets regulated by gene perturbations or treatments; all epigenomic data were processed to 

genomic loci targeted by various factors. Further refined statistical tests allows for 

comparison of high-throughput data from any platforms or studies. In this way, the newly 

generated data may be easily compared with previously generated data, thereby enabling 

researchers to decipher the transcriptional regulatory network and comprehensively interpret 

the biological significance based on newly generated omics data with high confidence. To 

keep the database updated and further incorporate other plant species, a standardized and 

automatic pipeline was developed for all processes from data collection, data processing, and 

database updating. Altogether, Plant Regulomics provides the plant science community with 

useful resources and tools for data-mining of upstream regulators and the generation of 

hypotheses based on omics data. 

 

METHODS 

Data collection 

A total of 19,043 transcriptomic data sets generated by RNA-seq or microarray analyses 

and 882 genome-binding profiling data sets generated by ChIP-seq or ChIP-chip for six 

plant species (Arabidopsis thaliana, Oryza sativa, Zea mays, Glycine max, Solanum 

lycopersicum and Triticum aestivum) were collected from the Gene Expression Omnibus 

(GEO), NASCArrays, and DDBJ databases (Supplemental Table 1B–E). The electronic 

annotation information, including pathways, Gene Ontologies, and InterPro domains, 

were retrieved from public databases (Supplemental Table 1A). The 489 non-redundant 

position weight matrices and relevant information used for motif analyses were 

downloaded from the latest (i.e., 7th) release of JASPAR (Khan et al., 2018) 

(Supplemental Table 1G). Orthologous gene pairs between five reference species (A. 

thaliana, O. sativa, Z. mays, G. max and S. lycopersicum) and another 56 whole-genome 

sequenced species were downloaded from Phytozome12 (Goodstein et al., 2012) 

(Supplemental Table 1F). 109,972 Arabidopsis protein-protein interactions (PPIs)  were 
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downloaded from TAIR (Garcia-Hernandez et al., 2002) and BioGRID (Stark et al., 2006, 

Oughtred et al., 2018), 555,831 rice PPIs were downloaded from DIPOS (Sapkota et al., 

2011), PRIN (Gu et al., 2011) and BioGRID (Stark et al., 2006, Oughtred et al., 2018) and 

29,611 maize PPIs were downloaded from PPIM (Zhu et al., 2016). 

Processing transcriptomic data sets to differentially expressed gene sets 

Transcriptomic data from microarray and RNA-seq analyses were processed, and 

differentially expressed gene sets were organized as described previously (Wang et al., 

2015). The bioconductor package limma (Ritchie et al., 2015) was used for the microarray 

data, while DESeq (Anders and Huber, 2010) was used for the RNA-seq data. 

Differentially expressed genes for sample comparisons were defined based on the 

following criteria: |log2 (fold change)| > 1, P-value < 0.01 for the microarray data and 

|log2 (fold change)| > 1, P-value < 0.05 for the RNA-seq data. Next,  transcriptomic 

comparisons resulted in a small number of genes (<10 genes) showing differential 

expression were excluded for subsequent analyses. 12,070 differentially expressed gene 

sets were finally obtained, which were further manually grouped into three categories, 

namely treatment, mutation/overexpression, and ecotype/cultivar. 

Processing ChIP-seq, ChIP-chip and DAP-seq data to peak sets and target gene sets   

The ChIP-seq data files in SRA format were downloaded from the Sequence Read Archive 

database maintained by the National Center for Biotechnology Information, and then 

converted to FASTQ format using fastq-dump 

(https://edwards.sdsu.edu/research/fastq-dump/). The sequence reads were cleaned by 

removing bases with low quality scores (< 20) and irregular GC content, cutting 

sequencing adapters, and filtering out short reads. The cleaned reads were mapped to the 

reference genome of the corresponding species using the default settings of BWA (Li and 

Durbin, 2009). Next, ChIP-seq peaks were detected using MACS14 (Zhang et al., 2008), 

while the ChIP-chip peaks were detected using TileMap implemented in CisGenome (Ji et 

al., 2011). The mapped bam files were converted to bigWig format using BEDTools 

(Quinlan and Hall, 2010) to configure the tracks of each study in JBrowse (Buels et al., 

2016). DAP-seq peaks for 540 TFs were downloaded from GEO (Guo et al., 2012, 

O'Malley et al., 2016). The target genes of each peak list were defined as those genes that 

have a given peak(s) in the region from 2 kb upstream to 2 kb downstream of the genic 

region. 
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Statistical test of the enrichment of the input gene list for the database gene sets 

A modified Fisher’s exact test defined as EASE score (Huang et al., 2007) was used for 

testing whether the input gene list significantly overlapped the gene sets curated in the 

database, which is calculated as follows: 

 A   s ore  
 

 

   
  

   

   
 

 
 

 
 

 

where N is the total number of genes as background and in different analyses the N is 

different, n is the number of input genes. K represents the total number of genes in one 

gene set and k stands for the overlapped genes between input and the pre-defined gene 

sets. Comparing to  a o i al Fisher’s exa t test, the  A   s ore is more conservative, i.e. 

resulted in fewer and more reliable gene sets enriched. For multiple test correction, the 

adjusted P values calculated by FDR, Bonferroni correction, and Benjamini and Hochberg 

methods were provided, which could be selected by users as criteria for definition of 

enriched terms. 

Statistical test of the significance of the overlap between genomic loci 

Analyzing the significance of the overlap between genomic loci is hampered by 

differences in peak lengths and the requirement that an appropriate background is selected. 

To address these issues, we designed the following method. First, the whole genome was  

divided into 1,000, 500, and 200 bp consecutive bins, selection of which for subsequent 

analysis is optional, depending on the pattern of input loci. For each peak list processed 

from the public epigenomic data or input peak list, the positions of overlapped bins were 

recorded. Next, given that there are some genomic loci detected as a peak region in all 

ChIP-seq experiments, possibly due to a mis-assembly or a repetitive feature, we 

generated a blacklist of genomic regions, which were defined as peaks in 124, 5, 38, and 

18 negative control ChIP-seq samples in A. thaliana, O. sativa, Z. mays, and G. max, 

respectively. These regions were removed from further analyses. Finally, EASE score was 

applied to calculate the significance of the overlapped bins between the genomic loci of 

the input list and in the database, using bins from the whole genome sequence overlapping 

any peak region as the background. A multiple test correction was completed according to 

the FDR, Bonferroni correction, and Benjamini and Hochberg methods to lower the 

false-positive rate. 
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Motif search and enrichment analysis 

We performed a motif scan using a 1,000 bp window centered at the peak center as 

described previously (Sun et al., 2018). For each motif M, the raw motif matching score 

at each peak P was calculated as           
      

      
 , in which S is a sequence fragment 

of the same length as the motif, and B is the background frequency of four types of 

nucleotides (A, C, G, and T) estimated from the genome. Regarding the motif enrichment, 

the enrichment of a given motif in a gene or peak list was defined as the ratio of the motif 

occurrence in the gene or peak list to its occurrence in random genomic regions.  

Tissue expression profile 

To determine the gene expression profiles across tissues, RNA-seq samples for different 

tissues in five species (A. thaliana, O. sativa, Z. mays, S. lycopersicum and T. aestivum) 

were selected (Supplemental Table 1E). For each gene, the number of fragments per 

kilobase of exon per million fragments mapped (FPKM) in each sample was calculated. 

Next, the mean FPKM value of samples from the same tissue was recorded. 

Functional network clustering of orthologous genes  

The functional annotation clustering method described by Huang et al. (Huang et al., 2007) 

was used for constructing the network of all enriched terms. All enriched terms with a 

fold-change and P-value satisfying a user-defined cutoff were selected and subsequently 

clustered according to the number of overlapping genes between filtered terms via the 

MCL algorithm (Dongen, 2008). The network was visualized with Cytoscape (Shannon et 

al., 2003). Transcriptomic data, which were used to identify genes induced by the 

pathogen infection of Populus trichocarpa, have been published (Azaiez et al., 2009). For 

clustering, we selected the enriched terms with a P-value < 0.05 and a fold-change greater 

than 10 for A. thaliana, and a P-value < 0.05 and a fold-change greater than 5 for O. 

sativa. The lowest number of overlapped genes between selected terms was set to 5.  

Database architecture  

Plant Regulomics was hosted on the Apache server based on a Linux platform, with its 

contents maintained as a systematic database using MySQL. Python scripts were used for 

data processing and statistical analyses. The web interface was implemented using PHP and 

JavaScript.  
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FIGURE LEGENDS 

Figure 1. Overview and workflow of Plant Regulomics.  

Plant Regulomics integrated 19,043 transcriptomic and 1,694 epigenomic data sets, which 

were processed and organized into 12,070 differentially expressed gene sets and 1,691 gene 

sets or genomic loci targeted by transcription factors and epigenetic factors. For any input 

gene list or genomic loci derived from high-throughput technology, Plant Regulomics returns 

the transcription factors, epigenetic factors, cis-elements, interactors, perturbation of genes, 

and experimental/environmental conditions regulating the input genes or genomic loci. 

Figure 2. Searching for upstream factors for FT gene. 

(A) Input page for a single gene. (B) Upstream factors of FT determined by comparisons of 

differentially expressed genes based on transcriptomic data. (C) Motifs present in the FT 

promoter and gene body regions. (D) Transcription and epigenetic factors surrounding FT, as 

determined by ChIP-seq studies. (E) Genomic tracks illustrating the binding of factors 

selected in (D) surrounding the FT locus. (G) The protein interactor(s) of FT. 

Figure 3. Searching for upstream factors for a set of ABA-induced genes. 

(A) Result summary page for searching the upstream factors of ABA-induced genes. (B) The 

table in the top panel lists the top enriched transcriptomic comparisons for the input gene list. 

The heatmap under the table indicates whether the expression of a given gene displayed 

significant changes in the transcriptomic comparison selected from the upper table. (C) 

Tissue expression profiles for the input gene list. (D) Transcription factors and epigenetic 

factors whose bindings are over-represented surrounding input genes. (E) Genomic tracks 

illustrating the binding of factors selected in (D). (F) Cis-elements over-represented 

surrounding input genes. (G) The protein interactors associated with input genes. The top five 

interactors with higher numbers of interactions with input gene list are listed, and all 

interactors could be downloaded.  
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Figure 4. Searching for upstream factors for PRR7-binding genomic loci determined by 

ChIP-seq.  

(A) Result summary page for genomic loci. (B) Details regarding the distribution and length 

of input genomic loci. (C) The table in the top panel lists the transcription factors and 

epigenetic factors whose bindings are over-represented surrounding input loci. The heatmap 

under the table indicates whether the factors selected from the table are present surrounding 

each locus. Genomic tracks for selected factors were visualized via a genome browser (D). (E) 

Cis-elements over-represented surrounding input loci. (F–G) Gene list functional annotation 

result for PRR7 peak targets, including the top enriched GO terms (F), transcriptomic 

comparisons between the treatment and control and transcriptomic changes in mutants (G). 

Figure 5. Functional annotation for orthologous genes. 

(A) For the input pathogen-induced poplar genes, the orthologous genes in any of the five 

reference species were returned. (B) The top enriched clusters of transcriptomic comparisons 

in Arabidopsis thaliana and Oryza sativa for the input poplar genes. (C) For the input maize 

pollen-specific genes, the tissue expression profiles of orthologous genes in A. thaliana and O. 

sativa are presented in the heatmap.  
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