
Article https://doi.org/10.1038/s41467-022-34290-w

Transposable elements orchestrate
subgenome-convergent and -divergent
transcription in common wheat

Yuyun Zhang1,2,3,11, Zijuan Li1,2,3,11, Jinyi Liu1,2,11, Yu’e Zhang 2,4,11, Luhuan Ye1,2,11,
Yuan Peng1,2,5, Haoyu Wang1,6, Huishan Diao3, Yu Ma1,2,5, Meiyue Wang3,
Yilin Xie1,2, Tengfei Tang1,6, Yili Zhuang1,2, Wan Teng2,4, Yiping Tong2,4,
Wenli Zhang 7, Zhaobo Lang1,2,5,8 , Yongbiao Xue 2,4,9,10 &
Yijing Zhang 3

The success of commonwheat as a global staple crop was largely attributed to
its genomic diversity and redundancy due to the merge of different genomes,
giving rise to the major question how subgenome-divergent and -convergent
transcription is mediated and harmonized in a single cell. Here, we create a
catalog of genome-wide transcription factor-binding sites (TFBSs) to assemble
a commonwheat regulatory network on an unprecedented scale. A significant
proportion of subgenome-divergent TFBSs are derived from differential
expansions of particular transposable elements (TEs) in diploid progenitors,
which contribute to subgenome-divergent transcription. Whereas
subgenome-convergent transcription is associated with balanced TF binding
at loci derived from TE expansions before diploid divergence. These TFBSs
have retained in parallel during evolution of each diploid, despite extensive
unbalanced turnover of the flanking TEs. Thus, the differential evolutionary
selection of paleo- and neo-TEs contribute to subgenome-convergent and
-divergent regulation in common wheat, highlighting the influence of TE
repertory plasticity on transcriptional plasticity in polyploid.

Polyploidy is a major factor driving plant evolution and speciation,
which is particularly prevalent in plants1–4. Polyploids demonstrated
increased adaptability and plasticity compared with their progenitors
in evolution. This has been attributed to the diversity and synergy
among different subgenomes3,5–7, raising the major question about
how subgenome-divergent and -convergent regulation is achieved and
harmonized in polyploids.

Common wheat (Triticum aestivum, 6x = AABBDD) contains three
sets of different genomes which underwent diverge-and-merge spe-
ciation events (Fig. 1a)8. The diploid progenitors of the three sub-
genomes diverged from a common ancestor about five million years
ago9, resulting in highly diversified intergenic regions with a near-
complete turnover of transposable elements (TEs)10. Two successive
polyploidization events occurred ~0.8million years ago and9000years

ago,which retained thegenomicdiversity of thesediploidprogenitors7.
Subgenome diversity and the buffering effects of polyploidy were
proposed to be major factors that contributed to the high plasticity of
common wheat5,7. Further domestication lead to the development of
common wheat as a staple crop cultivated worldwide.

The large intergenic regions of common wheat harbor abundant
regulatory elements (REs) encoding regulatory information that
determines the temporal and spatial specificity of genes11–13. The
associated variations affect a wide range of agronomic traits14–17.
Intergenic variation of REs across subgenomes may help explain the
fact that the expression of 30% of wheat homoeologs is
unbalanced12,13,18. However, it remains unclear how RE diversity across
subgenomes is specifically interpreted to dictate subgenome-biased
transcription. TEs are a rich source of REs as reported in both
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animals19–21 and plants22–27. Near-complete TE turnover was detected in
intergenic regions of common wheat across subgenomes. To what
extent subgenome-diversified TEs contributed to subgenome-biased
transcription is unclear. Furthermore, despite the highly diverse
intergenic regions, earlier researches revealed the extensive balanced
expression of homoeologs throughout development18,28, raising an
additional question regarding how this evolutionary constraint on
transcriptional regulation was achieved. The specific recognition and
binding of transcription factors (TFs) to REs is a primarymechanismby
which cells interpret genomic features29. Elucidating the extent to
which TF binding differs across subgenomes as well as the global
relationship between TF binding and subgenome variations in REs is
critical for addressing the above-mentioned issues.

In this work, we assemble a common wheat regulatory network
comprising connections among 189 TFs and 3,714,431 REs, which
help enhance the understanding of wheat regulatory mechanisms.
By leveraging phylogenetic strategies to study the evolution of the
regulatorymap, we not only detect lineage-specific TE expansions and
exaptations for subgenome-divergent transcriptional regulation, but
also track diploid parallel selection on transcription factor-binding
sites (TFBSs) derived from ancient TE expansions. Our findings con-
nect the dynamic death and birth of TEs to regulatory evolution in
common wheat, demonstrating that the plasticity of TE repertoires
potentially influence polyploid plasticity.

Results
Genome-wide profiling of TFBSs in common wheat
We cloned 189 TFs from 30 families, of which 107 were highly
expressed TFs and 82 were functionally annotated TFs or hub TFs in
the co-expression network (Supplementary Data 1). Each clone was
verified by full-length cDNA sequencing to confirm a lack of chimeric
fragments from homoeologs. Next, a DAP-seq analysis30 was per-
formed to characterize the genome-wide binding of these TFs, which
were classified according to whether the canonical binding motif was
de novo identified or enriched in a given TF peak list. This analysis
resulted in 45 high-, 47 median-, and 97 low-confidence TF datasets
(HC, MC, and LC, respectively) (Fig. 1b and Supplementary Fig. 1). All
DAP-seq data and peak files were deposited in GEO database [https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE192815]. The HC
and MC TFs were used for the subsequent analysis. The DAP-seq suc-
cess rate, represented by the fraction of HC TFs for each TF family,
varied among TF families. More specifically, the AP2, MYB, and B3 TF
families had high, median, and low success rates, respectively (Fig. 1c).
The binding for the TF families with low success rates likely requires
co-factors. All data were visualized using a customized genome
browser (http://bioinfo.sibs.ac.cn/dap-seq_CS_jbrowse/). Transcrip-
tion factors from the same family generally had similar binding profiles
(Fig. 1d). The binding of homoeologous TFs was largely similar across
subgenomes (enlarged heatmap in Fig. 1d), implying that the binding
specificity is likely dependent on RE sequences.

The TFBSs are not randomly distributed throughout the gen-
ome, with regions containing 42,332 binding sites designated as high-
occupancy target (HOT) regions31,32. The high regulatory activities of
HOT regions were reflected by the relatively high levels of chromatin
openness characterized by a DNase I hypersensitive site (DHS) and
H3K9ac activity typical of active promoters and enhancers in
wheat11,33 as well as the conservation across four wheat species with
different polyploidy levels (see Methods) (Fig. 2a). Additionally, 53%
of the HOT regions had sequences in syntenic regions that were
conserved in three subgenomes (Fig. 2b). Most of these sequences
were in gene-proximal regions (Fig. 2c). By comparing HOT regions
with higher-order chromatin structures, we determined that HOT
regions were preferentially localized to topologically associating
domain (TAD) boundaries (Fig. 2d). Figure 2e presents the genomic
features of one subgenome-conserved HOT region. Although the

local chromatin structure varied substantially across subgenomes,
HOT regions were still preferentially localized to TAD boundaries.
Previous research indicated TADs are formedvia promoter–enhancer
linkages mediated by co-opted REs34. In the current study, the con-
siderable enrichment of HOT regions in TAD boundaries implies that
a high TF occupancy may be associated with TAD formation. Alter-
natively, the chromatin architecture in TAD boundaries may help
facilitate TF occupation.

On the basis of this regulatory information, a directed regulatory
network was constructed (Supplementary Fig. 2), with the TF-target
gene pairs listed in Supplementary Data 2. To demonstrate the func-
tional implication of the binding of TFs, we integrated co-expression
profiles derived from 200 transcriptomic datasets, resulting in eight
modules with connections among 34 TFs and 8937 genes. To char-
acterize the functions of these modules, we screened for enriched
GeneOntology (GO) termsusingGOMAP35. The functionally annotated
groups are summarized in Fig. 2f and Supplementary Fig. 3. A module
comprising TFs and targeted genes potentially involved in photo-
synthesis is presented in Fig. 2g (zoomed in on the right). The module
consists of thoroughly describes TFs and other factors related to the
photoperiod and photosynthesis, including Dof, Ppd1, and Elf336.
Homoeologous TFs generally have similar target genes. This directed
regulatorymap allowed us to explore how polyploidy is regulated and
the associated effects on evolution.

Expansion of TFBSs in common wheat
To compare the RE architecture across subgenomes, HC TFBSs were
divided according to their sequence conservation among sub-
genomes (Fig. 3a). Subgenome-homologous regions were detected
on the basis of a reciprocal alignment, with syntenic (homoeologous)
and non-syntenic regions calculated separately (see Methods). On
average, 44% of the TFBSs were localized in subgenome-specific
regions (i.e., unalignable to the other two subgenomes), indicating
pervasive asymmetric subgenome regulation. To examine the diver-
sity in the functions of the genes regulatedby subgenome-convergent
and -divergent TFBSs, we searched for the over-represented GOMAP
terms associated with genes preferentially containing subgenome-
homoeologous and -specific TFBSs, respectively. The most enriched
GO term among the genes with homoeologous TFBSs was membrane
architecture (Fig. 3b), whereas genes with subgenome-divergent
TFBSs were mostly related to defense, with sequences that varied
among wheat species (Fig. 3c). Thus, subgenome-divergent environ-
mental adaptation is likely mediated by subgenome-divergent reg-
ulatory circuits.

We next examined the origin of subgenome-divergent TF binding.
For each TF, the TFBSs localized to subgenome-specific regions were
included in a pair-wise sequence comparison for each subgenome to
identify TFBS pairs with similar sequences. A Circos plot (Fig. 3d)
connecting bHLH-1A-1-binding sites with highly similar sequences
within each subgenome was constructed. These sites were revealed to
be much more abundant in wheat than in Arabidopsis thaliana. The
pair-wise sequence distance distributions of TFBSs within subgenome-
specific regions were determined for all TFs (Fig. 3e and Supplemen-
tary Fig. 4). Clearly, almost all TFBS regions underwent at least one
expansion event during evolution, as reflected by the apparent peak(s)
indicating the sequence similarity among a number of TFBSs. This is in
contrast with the results of other thoroughly investigated model
plants, including A. thaliana and Oryza sativa (Fig. 3d, e and Supple-
mentary Fig. 4).

Different TE families contribute to subgenome-specific TFBSs
More than 80% of the TFBSs with high pair-wise sequence similarities
were detected in transposable elements (TEs) (Supplementary Fig. 5),
whereas <40% of the TFBSs without high pair-wise sequence simila-
rities were localized in TEs. Given the high abundance of TEs and
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repeats (~85%) in wheat genome, their expansion with built-in reg-
ulatory copies may quickly alter cognate TF binding patterns as
reported in both plants and animals21,24,27,37,38. By overlapping with TEs,
we detected 50–60% of the subgenome-specific TFBSs in TEs (Sup-
plementary Fig. 6). The high sequence conservation and active epi-
genetic signature of TE-embedded TFBS indicated their functional
relevance (Supplementary Fig. 7). 19,196 (11%) of TFBS with high
chromatin accessibility reflected by seedlings DHS were embedded in

TEs, representing highly active binding sites in vivo (Fig. 4a). TE-
embedded TFBS without DHS may be active in response to specific
developmental or external cues. An alternative but not mutually
exclusive speculation is that TE-embedded TFBS evolved to promote
TE propagation, which predisposed them to be co-opted for host gene
regulation21. However, the contribution of TE-embedded TFBS to TE
transcription under normal conditions may be limited, given the
comparable transcription between TEs contributing to TFBS and TEs
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without TFBS (Supplementary Fig. 8). Regardless of the evolutionary
forces driving the retention of TE-embeddedTFBS, the large repertoire
of subgenome-diversified TEs provides a rich source of TF occupancy
for further evolutionary selection. Identifying these TE-derived TFBSs

provided a useful resource for further validating the regulatory effects
of TEs in common wheat.

Wenext traced the expansion of TEs that contributed to TFBSs. TE
families preferentially enriched among TFBSs present in only one
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subgenome were detected. RLG_famc7.3 contributed a significant
proportion of the subgenome A-specific TFBSs, whereas RLG_famc13
contributed to the divergent TFBSs in all three subgenomes (Fig. 4b, c).
Similar results were obtained when using replicated data (Supple-
mentary Fig. 9). These findings reflected the considerable plasticity of
the regulatory framework shapedbyTE-embeddedTFBSs. The lineage-
specific clustering of RLG_famc7.3 and RLG_famc13 was detected on
the basis of the evolutionary tree, indicating specific expansions in
different diploid progenitors (Fig. 4d, e). By using full-length LTRs to
date the expansion events, we demonstrated that the recent expan-
sions of both RLG families occurred after the divergence from the
common diploid ancestor (~5 million years ago) (Fig. 4f).

Effect of the unbalancedTFbindingon target gene transcription
To characterize the regulatory consequences of subgenome-balanced
and -unbalanced TF binding, we focused on gene-proximal TFBSs.
Recent transcriptomic data indicated that at least 30% of subgenome-
conserved triad genes (1:1:1 correspondence across three sub-
genomes) exhibit unbalanced expression18, which is likely coordinated
by RE sequence contexts and epigenetic modifications12. To clarify this
divergent regulation, we quantitatively partitioned TFBSs in triad
promoters according to subgenome binding preference, and exam-
ined the expression of their target genes (Fig. 5a and Methods). The
AP2 occupancy profile was stable across subgenomes, whereas the
binding of GARP and NAC TFs were highly diverse (Fig. 5b, c). The
subgenome-unbalanced binding of triads was consistent with the
subgenome-unbalanced expression of these genes (Fig. 5d). Although
not all of the differences in cis-regulatory sequences and transcription
are associated with functional changes, possibly because of evolu-
tionary drift39, this diversity results in substantial raw genetic material
for later uses, including the much later adaptations to environmental
changes, as proposed by the ‘radiation lag-time’ hypothesis, which
explains the observed delay between ancient polyploidization events
and functional consequences2,40.

Balanced transcription mediated by parallel TFBS retention
within asymmetrically decayed TEs
We further evaluated the impact of TEs on subgenome-balanced and
-unbalanced TF bindings to triad promoters. Balanced and unbalanced
TFBSs largely have similar fractions overlapping with TEs, with slightly
higher ratios for balanced TFBSs (Fig. 6a, b). For triads with TE-
embedded TFBSs in at least one promoter, more than 90% of both
balanced and unbalanced TF binding was associated with TEs inserted
in only one subgenome (Fig. 6c). It is unclear why the balanced TF
occupancy is accompanied by the unbalanced contribution of TEs
across triad promoters. We postulated that because of the long evo-
lutionary history of TEs in wheat, there are many TE relics in the gen-
ome, which need to be considered when characterizing the dynamic
effect of TE proliferations10,27. Accordingly, we searched for degener-
ated TE (dTE)-derived TFBS in triad promoters (Supplementary
Fig. 10). For each triad with TE-derived TFBS in at least one promoter,
the TE sequence was compared to promoter(s) of other gene(s)
belonging to the same triad. The corresponding alignable promoter
regions without canonical TE structures were defined as dTEs (Fig. 6d).
WhenTEs anddTEswere considered together, the fraction ofbalanced
triads with TE- and dTE-embedded TFBSs in all three triad members
increased substantially (Fig. 6e, the orange box). For unbalanced
triads, the contribution of dTEs to TFBSs was limited (Fig. 6e, the blue
box). As a control, TEs contributed to TFBS from one triad promoter
was compared to promoters of different triads without canonical TE
structure. For each TF, 1000 permutation tests were conducted, and
almost no alignable region was detected using the same cutoff as
above (Supplementary Fig. 11). Furthermore, when comparing dTE-
embedded TFBS with corresponding TE-embedded TFBS, ~90% TFBS
sequences were highly consistent, suggesting a common origin

(Fig. 6f). Similar results were obtained when using DHS data reflecting
in vivo binding activity, and were also supported by replicated data
(Supplementary Fig. 12 and Supplementary Fig. 13). Thus, a consider-
able fraction of the balanced TFBSs derived from TEs may have
degenerated, retaining only binding sites during evolution.

The biological importance of these dTE-derived TFBSs is sup-
ported by their high conservation across wheat species with different
ploidy levels, i.e. diploid and tetraploid progenitors. However, the
flanking TE sequences are highly diverse (Fig. 6g-j). Consistent with
this result, the epigenetic profiles were indicative of active chromatin
architecture at the dTE-derived TFBS but much less active in sur-
rounding regions (Fig. 6j). This is an intriguing finding suggesting that
a significant proportion of the TFBSs derived from anciently expanded
TEs experienced parallel selection in each diploid lineage after diver-
gence, whereas the flanking TE sequences were affected by relaxed
selection or diversifying selection, resulting in unbalanced decay.
Furthermore, by using DHS data to analyze the effect of TEs on RE
activity and transcription, the specific evolutionary constraint on TE-
derivedREs and the apparent association betweenbalancedRE activity
and balanced expression were also detected (Fig. 6k, l). These results
reflect the evolutionary effects of TE remnants on subgenome-
convergent transcriptional regulation.

Paleo-expansion of RLC_famc1.4 dominates TE-derived sub-
genome-convergent TFBS
Both RLC_famc1.4 and degenerated RLC_famc1.4 were highly enriched
among the balanced TFBSs across triad promoters (Fig. 7a), account-
ing for 23% of the balanced TE-derived TFBSs. Notably, the ancient
expansions of almost all TF families profiled herein were associated
with amplification of RLC_famc1.4. A mixture of RLC_famc1.4 TEs from
three subfamilies was detected in the phylogenetic tree (Fig. 7b),
indicating most RLC_famc1.4 TEs may have been derived from the
common ancestor of the diploid progenitors. To further trace the
occurrence of RLC_famc1.4 expansion, we analyzed RLC_famc1.4 from
Triticeae species, including Secale cereale (rye) and Hordeum vulgare
(barley). The Kimura two-parameter (K2P) distances reflecting the
genetic distance of RLC_famc1.4 between species were calculated. The
distribution of the K2P distances between wheat subgenomes and
between wheat and rye shared a peak centered on a similar K2P dis-
tance, suggesting that a paleo-expansion of RLC_famc1.4 occurred
prior to the divergence of wheat and rye (Fig. 7c). In contrast, there
were no common K2P distance peaks for RLG_famc7.3 and
RLG_famc13, indicative of a lineage-specific expansion of these two
subfamilies. The analysis of DHS data, which reflect chromatin open-
ness and activity in vivo, also indicated that RLC_famc1.4 is the most
enriched TE family for DHSs derived fromboth TE and dTE (Fig. 7d, e).
Why this specific TE family dominates the TFBS exaptation in gene-
proximal regions is an interesting issue. The possible mechanisms are
discussed in the following section.

Discussion
Cistrome maps for common wheat are a valuable resource for evalu-
ating the integrated interactions of cis- and trans-factors that deter-
mine regulatory specificity. We revealed that diverse evolutionary
forces acted on the paleo- and neo-TE-derived TFBSs, which mediate
subgenome-divergent and -convergent TF binding, with distinct and
synergistic regulatory consequences for the evolution of poly-
ploids (Fig. 8).

Multiple TFBS expansion events were detected in wheat, but not
in other model plants, including A. thaliana and O. sativa (Fig. 3d, e).
This finding may be attributed to the active expansion of retro-
elements involving built-in TFBSs in wheat. The TE-embedded TFBS
expansion events that occurred before and after the divergence of the
diploid progenitors contributed to subgenome-common and -diver-
gent TFBS expansion events, respectively, reflecting the importance of
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TE domestication for subgenome regulatory conservation and inno-
vation. TEs contributed to TFBS were preferentially restricted to a
limited number of TE families. RLC_famc1.4 expansions in common
ancestor were associated with a significant fraction of the subgenome-
homologous TFBS expansions (Fig. 7). Whereas RLG_famc7.3 spread-
ings unique to certain subgenome may have resulted in subgenome-

divergent regulation (Fig. 4). This is analogous to the human-specific
dispersion of Alu elements, which participated in various human-
specific regulatory events (e.g., conferring enhancer elements and
modulating higher-order chromatin structures)41. Thus, TEs have sig-
nificantly and continuously rewired wheat regulatory circuits. Follow-
ing polyploidizations, trans-acting factors acquired additional suites of
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cis-elements42, which generated increasingly complex interactions
potentially shaped by TEs. This considerable increase in the number of
new interactions may have had an immediate or delayed effect on the
adaptation of polyploid wheat2,40.

Despite the extensive changes in intergenic regions across sub-
genomes by TE turnovers, the overall RE architecture was highly
conserved, both in terms of the parallel evolution of TE-derived TFBSs
and the extensive coordination of homoeologs (Fig. 6). Since the ori-
ginal report of TE functionalization by McClintock, there has been
mounting evidence regarding the profound functional implications of
TEs for the regulatory networks in animals19–21 andplants22–26. However,
TEs are subjected to rapid turnover, and the regulatory roles of TEs
were mostly associated with creating new TFBSs. The TE relics and
their evolutionary and functional importance are unclear, but they are
crucial for deciphering the evolutionary effect of TEs on the genome-
scale regulatory circuit. As a relatively young polyploid merged three
highly plastic genomes shaped by abundant TEs of various ages,
common wheat is ideally suited for subgenome comparisons aimed at
clarifying the progressive and ongoing role of TE expansion and
degeneration in regulatory evolution. A recent genome-wide char-
acterization of commonwheat TEs revealed that despite the intergenic
turnover by TEs, unexpected preservation of the relative distance to
genes was observed for specific TE families10, implying certain TE
families may have insertion preference relative to genes43,44, some of
which may have been commonly selected in different diploid pro-
genitors. The present study demonstrated that the position-specific
retention of TFBSs in specific TE families occurred in parallel across
subgenomes. This apparent sequence conservation of TE-derived
TFBS across subgenomes reflected their functional significance.

It is still amystery why RLC_famc1.4 is the dominant TE family that
contributed to TFBSs conserved across subgenomes. We studied this
issue from perspectives of sequence and location. It was proposed in
mammals that TEs with given built-in TF binding motifs tend to be
favored by selection37. However, RLC_famc1.4 has no significant
enrichment for the TF binding sequences compared to randomly
selected TE regions (Supplementary Fig. 14). Mammalian studies
demonstrated that TEs contributed to chromatin looping45,46. On the
basis of the overlap with the local chromatin structure, we determined
that RLC_famc1.4 sequences, particularly those overlapping TFBSs,
were the most enriched sequences in TAD boundaries among the
abundant TEs (Fig. 7f). This enrichment apparently applies only to
subgenome-common TADs (Fig. 7g), indicating the parallel selection
of TE-derived TFBSs may be associated with subgenome-convergent
local chromatin structures.

Method
Plant materials and growth conditions
Common wheat [Triticum aestivum cultivar ‘Chinese Spring’ (CS)]
seeds were surface-sterilized via a 10-min incubation in 30% H2O2

and then thoroughly washed five times with distilled water. The
seeds were germinated in water for 3 days at 22 °C, after which the
germinated seeds with a residual endosperm were transferred
to soil. The seedlings were harvested after a 9-day incubation
under long-day conditions. The above-ground parts of the har-
vested seedlings were frozen in liquid nitrogen for the DAP-
seq assay.

DAP-seq assay
Genomic DNA was extracted from wheat leaves using Plant DNAzol
Reagent (Invitrogen) and then fragmented. The DNA ends were
repaired using the End-It kit (Lucigen) and then an A-tail was added
using the Klenow fragment (3′–5′ exo-; NEB). The truncated Illumina
Y-adapter (Annealed by using adaptor strand A: 5’-ACACTCTTTCCC
TACACGACGCTCTTCCGATCT-3’ and adaptor strand B: 5’-P-GATCG
GAAGAGCACACGTCTGAACTCCAGTCAC-3’, where ‘P’ indicates a 5’
phosphate group) was ligated to the DNA using T4 DNA ligase (Pro-
mega). Full-length TF coding sequences were cloned into the pIX-Halo
vector. For TFs with multiple isoforms, the longest coding sequence
was selected. Halo-tagged TFs were expressed in vitro using the TNT
SP6 Coupled Wheat Germ Extract System (Promega) and then immo-
bilized using Magne HaloTag Beads (Promega) before they were
incubated with the DNA library. The DNA binding to specific TFs was
eluted for 10min at 98 °C and then amplified by PCR using indexed
Illumina primers and Phanta Max Super-Fidelity DNA Polymerase
(Vazyme). To capture the background DNA, the Halo tag encoded in
the empty pIX-Halo vector (i.e., without a TF coding sequence) was
expressed and incubated with the DNA library. The amplified frag-
mentswerepurified using VAHTSDNAClean Beads (Vazyme) and then
sequenced by Novogene (Beijing, China) using the Illumina NovaSeq
6000 system to produce 150-bp paired-end reads.

Processing of DAP-seq, ChIP-seq, RNA-seq, and DHS data
We downloaded the histone ChIP-seq data for seven typical tissues
and eight external stimuli, seedling RNA-seq data, and seedling
DNase-seq data for CS from the NCBI GEO database (accession
numbers GSE139019 and GSE121903)11,12. The OsHOX24 ChIP-seq
data for Oryza sativa were also obtained from the NCBI GEO data-
base (accession number GSE144419)47. Additionally, the CS endo-
sperm RNA-seq data were downloaded from the NCBI BioProject
database (accession number PRJEB5135)28. Sequencing reads were
cleaned using the fastp (version 0.20.0)48 and Trim Galore (version
0.4.4) programs, which eliminated bases with low-quality scores
(<25) and irregular GC contents as well as sequencing adapters and
short reads. The remaining clean reads for the DAP-seq, ChIP-seq,
and DHS analyses weremapped to the International Wheat Genome
Sequencing Consortium (IWGSC) reference sequence (version 1.0)
using the Burrows–Wheeler Aligner (version 0.7.17-r1188)49. The
HISAT2 program (version 2.2.1)50 was used for mapping the RNA-

Fig. 6 | Subgenome-parallel retention of TE-derived TFBSs associated with
balanced target gene transcription. a, b Fraction of triads with unbalanced (a)
and balanced (b) TF binding embedded in TEs. The TFs (n = 36) with >200 targeted
triads are presented. c Fraction of triads with balanced and unbalanced TE-
embedded TF binding in one, two, or three subgenomes. TFs (n = 36) targeting
>200 triads are presented. Horizontal lines in boxplots show median, hinges show
IQR, whiskers show 1.5 × IQR, points beyond 1.5 × IQR past hinge are shown.
d Schematic for defining dTE and dTE-derived TFBS. e Fraction of triads with
balanced and unbalanced TF binding embedded in TE and corresponding dTE
present in one, two, or three subgenomes. TFs (n = 25) targeting >20 triads with TE-
embedded TFBSs are presented. Boxplots definition is the same as Fig. 6c. f Left:
schematic for identifying triads with similar TE and dTE-TFBS. Right: Fraction of
triads with high sequence similarity of TFBS derived from TE and corresponding
dTE (n = 25). Boxplots definition is the same as Fig. 6c. gGenome tracks illustrating
dTEs contributing to the convergent TF binding to URE promoters. h Multiple

sequence alignment of the promoter region in Fig. 6g. i Alignment of the TFBS in
Fig. 6h with AP2 motifs highlighted. j Conservation score and epigenetic profiles
surrounding dTE-derived TFBSs and non-TE TFBSs. k Correlation between
subgenome-biased chromatin openness of TE-embedded DHS and target gene
expression. left: ternary plots showing the relative chromatin openness of d TE-
embedded DHSs in triad promoters. The dot color represents the Euclidean dis-
tance of DHS density to the balanced point; right: triad genes were grouped
according to the unbalanced level of promoter DHS, and the two-tailed Wilcoxon
signed-rank test was used to compare triads (n = 671) expression distance.
lHomoeolog pairs of triadswere grouped according to the DHdivergence, and the
two-tailed Wilcoxon signed-rank test was used to compare expression divergence
between subgenomes A and B (n = 604), B and D (n = 489), A and D (n = 611),
respectively. Boxplots definition is the same as Fig. 6c. Source data are provided as
a Source Data file.
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seq reads to the reference sequence. Reads with a mapping quality
score <20 were removed. The remaining reads were mostly
(>99.6%)mapped to only one position, and themulti-mapped reads
were eliminated.

The MACS program (version 2.2.6)51 was used to identify the
read-enriched regions (peaks) on the basis of a threshold of
P < 1 × 10−10. For the DAP-seq analysis, the peaks detected for the
samples with the Halo tag alone were considered to represent non-
specific binding (i.e., negative control). The TF peaks overlapping

the peaks detected for the Halo tag samples were excluded in the
subsequent analysis. To quantify gene expression levels, the fea-
tureCount program of the Subread package (version 2.0.0)52 was
used to determine the RNA-seq read density for the genes. Inte-
grative Genomics Viewer53 was used to visualize the binding of TFs,
histone markers, gene expression, and chromatin accessibility in
the genome. The number of reads at each position was normalized
against the total number of reads (i.e., reads per million map-
ped reads).
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Processing of Hi-C data
We downloaded the Hi-C data for CS54 in the NCBI GEO database
(accession number GSE133885). Reads were aligned to the IWGSC
reference sequence (version 1.0) and filtered using HiC-Pro (version
2.11.1)55. The default parameter “-q 10” was used to retain uniquely
mapped read pairs. We used “findTADsAndLoops.pl” implemented in
the Homer software to detect TAD-like domains56. We used Juicer to
generate KR-normalized contact matrices with bin sizes set to 25 kb
and Juicerbox to visualize the TADs57. The TAD-like domain boundaries
were identified as 20 kb regions centered at the boundary points.

Detection and enrichment analysis of transcription factor-
binding motifs
The peaks were sorted on the basis of the q-value and then the fold
enrichment. The 600bp sequence centered on the summit of the top
6000 peaks was used to detect de novo motifs using MEME-ChIP58

from the MEME software toolkit (version 5.1.1), whereas the enriched
knownmotifs in the JASPAR database were detected using AME59 from
the MEME software toolkit. The de novo motifs were used to analyze
the occurrence of individual motifs in the genome using the FIMO
program60 from the MEME software toolkit. Motif logos were drawn
using the R package motifStack (version 1.34.0)61 and universalmotif
(version 1.4.0).

Construction of a co-expression network
We downloaded 536 hexaploid wheat expression datasets from the
Wheat Expression Browser (http://www.wheat-expression.com/)18.
Genes with a TPM value <1 in at least 20 samples were removed and
then 200 samples were randomly selected to generate a filtered
expression matrix. Finally, 19,446 genes with high variance (top 25%)
were retained. The WGCNA package (version 1.70.3)62 was used to
construct a co-expression network. An unsigned network was

Fig. 7 | Ancestral expansion of RLC_famc1.4 dominates TE-derived subgenome-
convergent TFBSs. a Enrichment of TE (left) and dTE (right) families that con-
tributed to the balanced TF binding across triad promoters, with the fraction of TE
in the genome as the background. b Dendrogram presenting the sequence simi-
larity of the full-length RLC_famc1.4 members. c Sequence distance of full-length
RLC_famc1.4, RLG_famc13, and RLG_famc7.3 members among three wheat sub-
genomes as well as between wheat and rye and wheat and barley. For each TE
subfamily, 500 copies from subgenome A were randomly selected. The copy
numbers for the B and D subgenomes as well as rye and barley were selected
according to the total copy numbers in the B and D subgenomes as well as in rye
and barley relative to the total copy number in subgenomeA. For each TE copy, the
sequences of the LTR at the 5′ end and 3′ ends were merged and aligned to other

merged LTRs. The copy numbers of the full-length RLC_famc1.4 and RLG_famc7.3
members in barley were <25. Thus, these sequences were not considered in this
analysis. d Enrichment of TE families contributing to the balanced chromatin
openness across triad promoters. The fraction of TE in the genome was used as
background. e Enrichment of dTE families contributing to the balanced chromatin
openness across triad promoters. The fraction of TE in the genome were used as
background. f Enrichment of TE subfamilies in the TAD boundaries with and
without TFBSs, with the fraction of TAD boundaries in the genome as the back-
ground. g Enrichment of TE subfamilies in the subgenome-common and -unique
TAD boundaries, with the fraction of subgenome-syntenic and -unique TADs as the
background, respectively. Source data are provided as a Source Data file.
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constructed using the blockwiseModules function, with the following
parameters: power = 6; maxModuleSize = 6000; TOMType = unsigned;
minModuleSize = 30; reassignThreshold =0; mergeCutHeight = 0.25;
numericLabels = TRUE; and pamRespectsDendro = FALSE. If the co-
expression partners of a gene could be defined by the above-
mentioned criteria, they were assigned to the same module. Other-
wise, the genes were classified in module 0. All edges were ranked
according to the TOM value, and the top 80,000 edges were selected.
The modules with HC and MC TFs (with 8,971 nodes) were visualized
using Cytoscape (version 3.8.2)63. The GO terms curated by GOMAP64

were used to detect the over-represented functional terms associated
with the genes in each module.

Calculation of the sequence conservation score
We completed a pair-wise comparison of the genome sequences using
the NUCmer tool in the MUMmer package65, with the parameter
“--mum”. For the comparison of diploid, tetraploid, and hexaploid
wheat, the genome sequences of Triticum urartu (AA subgenome;
IGDB version 1.0), Aegilops tauschii (DD subgenome; ASM34733 ver-
sion 2), Triticum turgidum (AABB subgenome; WEWSeq version 1.0),
and T. aestivum (AABBDD subgenome; IWGSC version 1.0) were used.
The minimum sequence identity was set to 90 and each subgenome
was treated as an individual genome. Next, ROAST66 from multiz was
used to integrate pair-wise sequence alignments into a multiple
sequence alignment. The multiple sequence alignment and tree data
were fitted using PhyloFit, after which the conservation score was
calculated using phastCons from the PHAST package67, with the
parameters “--target-coverage 0.25; --expected-length 12”.

Detection of the subgenome-homologous and -specific regions
To determine the homologous regions across subgenomes, we used
the subgenome alignment results generated by NUCmer. The reci-
procal aligned regions that were longer than 400bp were defined as
homologous regions across three subgenomes (homo3) or two sub-
genomes (homo2). Regions that were not aligned to another two
subgenomes were defined as specific regions (specific). Subgenome-
syntenic regions were detected using MCScanX (python version)68,
with homologous regions localized to syntenic regions defined as
homoeo3, i.e., syntenic homo3 regions.Accordingly, 35%, 15%, 51%, and
16% of the genomic regions were defined as specific, homo2, homo3,
and homoeo3, respectively.

Sequence comparison of subgenome-specific TFBSs
The BLASTN algorithm was used to identify subgenome-specific TFBS
pairs showing high sequence similarity within subgenomes, with the
following parameters: E-value <1e-30, identity >70%, and query cov-
erage >70%. The relationships among similar TFBS pairs (400 ran-
domly selected TFBSs in each subgenome and A. thaliana) were
visualized using Circos69.

To analyze TFBS expansion, 500 randomly selected TFBS
sequences in each subgenome for each TF were aligned using MAFFT
(version 7.149b)70. The distance for each TFBS pair was calculated
using ‘Distmat’ from EMBOSS (version 6.6.0.0)71, which applied the
widely used K2P model of nucleotide substitution for estimating
geneticdistance andphylogenetic relationships. The sequences of 500
randomly selected TFBSs for homologous TFs in A. thaliana were
aligned and the distance was calculated in the same way.

Enrichment of specific TE families that contributed to TF
binding
Weused CLARI-TE to annotate CS TEs. Additionally, ClariTeRep, which
is a library containing the TEs and repeat sequences annotated in the
TREP database and the annotated repeats on CS chromosome 3B72,
and RepeatMasker73 were used to search the whole genome to detect
candidate TEs. The results were prepared in an “embl” format to be

used as the input file for CLARI-TE, which revealed the TE types,
genomic positions, families, and subfamilies. The TE families were
designated according to the rules of the ClariTeRep database. For
example, RLG_famc7.1 and RLG_famc7.3 are subfamilies of RLG_famc7.

The TE subfamilies accounting for more than 0.1% of the genome
lengthwere selected. The enrichment scores (ES) for 98 TE subfamilies
and 45 TFs were calculated using the following formula:

ES =
lengthof TFðiÞpeaks in TE subfamilyðjÞ=lengthof all TFðiÞpeaks
lengthof theTEs in subfamilyðjÞ=lengthof all TEs in the genome

ð1Þ

For the analysis of enriched TEs in the subgenome-homoeologous
and -specific regions, the merged TFBSs for 45 TFs were used. To
analyze the enrichment of dTEs, the non-degeneratedTEswere used to
calculate the length of the TEs in subfamily(j) and the length of all TEs
in the genome.

Evolutionary analysis of enriched TE subfamilies
LTRharvest74was used to identify the full-length LTRsofCS. Full-length
TE sequences were aligned usingMAFFT. FastTree (version 2.1.10) was
used to construct thephylogenetic tree,whichwasvisualized using the
R package ggtree (version 2.4.1)75. The insertion time was determined
on the basis of the divergence between the 5′ and 3′ LTRs and calcu-
lated using distmat from EMBOSS.

Definition of subgenome regulatory divergence
First, we determined the regulatory effect of each TF on each tar-
get gene and then defined the subgenome regulatory divergence
of each TF by comparing the regulatory effects on subgenome-
homologous genes.

The regulatory effect was quantified according to the TF affinity
score (TFAS), which was calculated using the following formula:

TFAS=
Xn

k = 1

rpkmk × e
� dk

2000 ð2Þ

whered is the distance from the peak summit to the gene transcription
start site and rpkm is the normalized read count (i.e., reads per kilobase
per million mapped reads) in the peaks. The promoter was defined as
the 5 kb region centered on the gene transcription start site. Addi-
tionally, n is the total number of peaks in the promoter. All n peaks
were considered to calculate the TFASof a gene. TheTFASof the genes
without a TFBS in the promoter was 0.

Orthofinder76 wasused to identify the orthologous genes between
subgenomes. The orthogroups with only one copy in each subgenome
(1:1:1) were defined as triads. The triads with a TFAS <0.25 for all three
genes were filtered. We normalized the TFAS of the genes in each triad
by calculating the proportion of the TFAS of one subgenome in the
sum of three subgenomes. Subgenome-balanced and -unbalanced
regulatory divergence patterns were represented by seven standard
TFAS proportions. Specifically, the proportion [0.33, 0.33, 0.33]
represented the balanced regulatory divergence pattern of the sub-
genomes (ABD). The proportion [0.5, 0.5, 0], [0.5, 0, 0.5], [0, 0.5, 0.5]
represented unbalanced regulatory pattern-2 (AB, AD, BD), whereas [1,
0, 0], [0, 1, 0], [0, 0, 1] represented unbalanced regulatory pattern-1 (A,
B, D). The Euclidean distance from the normalized TFAS to the seven
standard coordinates was calculated for each triad. The subgenome
regulatory divergence pattern was assigned to the standard TFAS
proportion pattern with the closest distance.

To compare the regulatory divergence and expression diver-
gence, the regulatory divergence was quantified as the |log2(fold-
change)| in the DAP-seq normalized read count for the promoters
between subgenome 1:1 orthologous gene. Orthologous pairs with a
TFAS greater than 0.25 for at least one gene were used. For each
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orthologous pair, we summarized the regulatory divergence of all
TFs that targeted the genes. The expression divergence was quan-
tified as the |log2(fold-change)| in CS seedlings between subgenome
1:1 orthologous gene.

The DNase-seq data were used to define the in vivo regulatory
divergence. The chromatin openness score of each gene and the DH
proportion of each triad with the TE-embedded DHS were calculated
using the above-mentioned formula and method. We quantified the
divergence of chromatin openness of each triad by calculating the
Euclidean distance from the DH proportion to the standard balance
point [0.33, 0.33, 0.33].

Definition of dTEs
For triads with TE-embedded TFBS in at least one subgenomes, the
BLASTN algorithm (version 2.9.0) was used to identify dTEs. Specifi-
cally, sequence of TE with TFBS in the promoters of one or two sub-
genomes were aligned with the promoters without canonical TE
structures. Alignable regions overlapping with TEs were removed, and
regions with alignment lengths > 50 bp were defined as dTE. For
illustration in Fig. 6h–i, TE and dTE sequences in the URE promoter
were aligned using MAFFT and visualized using Jalview (version
2.11.1.3)77. As a control, permutation tests were performed for each TF
(Supplementary Fig. 11).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
TheDAP-sequencing data generated in this study have been submitted
to the NCBI Gene Expression Omnibus under accession number
GSE192815. Tracks for all sequencing data can be visualized through
our local genome browser [http://bioinfo.sibs.ac.cn/dap-seq_CS_
jbrowse/]. Histone ChIP-seq data of seven typical tissues and eight
external stimuli, RNA-seq and DNase-seq data of Chinese Spring(CS)
seedling used in this study are under accession numbers GSE139019
and GSE121903 in NCBI GEO database11,12. Hi-C data of CS54 used in this
study is under accession number GSE133885 deposited in NCBI GEO
database. The hexaploid wheat transcriptomic data of 536 samples
used in this study were downloaded from Wheat Expression Browser
[http://www.wheat-expression.com/]18. The OsHOX24 ChIP-seq data of
Oryza sativa used in this study is under accession number GSE144419
deposited in NCBI GEO database47. The TFBS of A. thaliana used in this
study were downloaded from Plant Cistrome Database [http://
neomorph.salk.edu/dap_web/pages/index.php]78. Source data are
provided with this paper.

Code availability
Scripts are available at Github [https://github.com/yuyun-zhang/
hexa_dap].
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