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Transposable element-initiated enhancer-
like elements generate the subgenome-
biased spike specificity of polyploid wheat

Yilin Xie1,2,3,11, Songbei Ying 1,11, Zijuan Li2,3,11, Yu’e Zhang 3,4,11, Jiafu Zhu5,11,
Jinyu Zhang 1,2,3, Meiyue Wang1, Huishan Diao1, Haoyu Wang2,6,
Yuyun Zhang1,2,3, Luhuan Ye2,3, Yili Zhuang2,3, Fei Zhao2,3, Wan Teng3,4,
Wenli Zhang 7, Yiping Tong3,4, Jungnam Cho 8 , Zhicheng Dong 5 ,
Yongbiao Xue 3,4,9,10 & Yijing Zhang 1

Transposable elements (TEs) comprise ~85% of the common wheat genome,
which are highly diverse among subgenomes, possibly contribute to polyploid
plasticity, but the causality is only assumed. Here, by integrating data from gene
expression cap analysis and epigenome profiling via hidden Markov model in
common wheat, we detect a large proportion of enhancer-like elements (ELEs)
derived from TEs producing nascent noncoding transcripts, namely ELE-RNAs,
which are well indicative of the regulatory activity of ELEs. Quantifying ELE-RNA
transcriptome across typical developmental stages reveals that TE-initiated ELE-
RNAs are mainly from RLG_famc7.3 specifically expanded in subgenome A.
Acquisition of spike-specific transcription factor binding likely confers spike-
specific expression of RLG_famc7.3-initiated ELE-RNAs. Knockdown of
RLG_famc7.3-initiated ELE-RNAs resulted in global downregulation of spike-
specific genes and abnormal spike development. These findings link TE expan-
sion to regulatory specificity andpolyploiddevelopmental plasticity, highlighting
the functional impact of TE-driven regulatory innovation on polyploid evolution.

The rise of hexaploid wheat in the Fertile Crescent about 10,000 years
ago revolutionized the way modern humans live1–3. Common wheat
(Triticum aestivum, AABBDD) genome consists of three sets of diploid
genomes adapted to different environments and dominates global

wheat production4,5. Subgenomic diversity is one major factor con-
tributing to the success of common wheat3,6. The three subgenomes,
particularly the intergenic regions, were highly divergent due to mul-
tiple rounds of transposable element (TE) expansions5. TEs make up
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around 85% of the 16 Gb common wheat genome, which contribute a
substantial amount of regulatory elements (REs) and are potentially
associated with co-option of TE and the host genome7. However, a
causal relationship between TE-embeddedREs andpolyploid plasticity
has so far beenmissing. Therefore, it is unknown if the contribution of
TEs to REs has functional relevance or due to genetic drift. Elucidating
this issue is important for understanding the impact of TE turnovers
across diploid progenitors on the polyploid plasticity during evolu-
tion, and for crop improvement by targeting REs without altering the
coding sequences.

Common wheat TEs preferentially contribute to distal REs, some
of which have enhancer activity7. Consistently, abundant chromatin
loops were detected by Hi-C technology in common wheat, indicating
abundant distal regulations8,9. However, inferring the function of distal
REs is challenged by their ability to act on target genes over long and
variable distances, as well as the propensity of individual enhancers to
regulate multiple genes. Additional challenges are that RE activity is
dynamic and restricted to specific tissue or responsive to specific
environmental cues. Furthermore, functional REs have no discernible
sequence signature. Therefore, new approaches are needed to func-
tionally dissect the distal RE. Recent human studies reported prevalent
transcription of noncoding transcripts (ncRNAs) from polymerase II-
initiated enhancers, generating enhancer RNAs (eRNAs), some of
which play diverse roles in regulating cellular functions10–16. Despite it
remains unclear whether eRNA functions are generalizable, given that
eRNA transcription occurs very early in gene transcription process,
and their activities correspond well to the dynamic tissue and lineage
specificity, eRNA serves as a good marker of cell state and function.
Recent report in common wheat seedlings detected thousands of
nascent noncoding transcripts produced by ELEs, which were much
more likely to be functional than candidate REs that were not
transcribed17. Profiling the transcriptional specificity of these ELE-RNAs
is a promising strategy for deducing the regulatory functions of ELEs.

The majority of eRNAs are generally unstable, which are not
readily detectable in steady-state RNA-sequencing data. Their anno-
tation depends on sequencing nascent RNA using approaches includ-
ing global run-on sequencing (GRO-seq) and cap analysis of gene
expression (CAGE), the latter of which yields TSS information at
nucleotide resolution, and was shown to be highly accurate for
detecting 5′ ends of bothmRNAs18–20 and eRNA10 inmammal studies. In
plants, high-quality TSS was detected using CAGE and relevant tech-
nologies in Arabidopsis21,22, maize23 and cotton24, mostly focusing on
coding genes. The large intergenic region of common wheat harbors
abundant noncoding nascent transcripts from ELEs probed by
GRO-seq17.

In this work, via hidden Markov model integrating tissue-specific
maps of CAGE, epigenomic and transcriptomic profiles, we detect
active nascent ncRNAs transcribed from 11,452 ELEs. We further reveal
the impact of subgenome-specific TE expansion on subgenome het-
erogenic transcription of genes and ELEs, thereby regulating
subgenome-biased developmental specificity. These findings detect
TE-embedded ELEs as the anchor mediating reciprocal adaptation
between transposable element and the host genome, contributing to
polyploid developmental specificity and plasticity.

Results
Active nascent RNA transcription in common wheat transpo-
sable elements
Transposable elements (TEs) in the commonwheat genomeare largely
repressed by hyper DNA methylation (Fig. 1a). However, a closer
examination revealed local hypo-methylated TE loci comprising open
chromatin surrounded by active histone marks indicative of active
regulatory elements (REs) (Fig. 1b), consistent with recent report
defected prevalent bindings of transcription factors inside TEs in
wheat7. However, the function of theseREs indevelopment aredifficult

to bepredicted given that themajority of TE-embeddedREs are distant
from genes (enhancer-like elements, ELEs) and potentially influence
multiple targets in a tissue-specific manner. Recent human studies
demonstrated the prevalent and early production of noncoding tran-
scripts from active enhancers, which are excellent markers for directly
predicting enhancer functions in developmental specificity10–16.

We detected apparent enrichment of nascent noncoding tran-
scripts previously generated in seedlings (data from17) in these TE-
embedded ELEs (Fig. 1c). In order to profile the dynamic transcriptome
of ELE-RNAs, the genome-wide gene and RE TSSs weremapped on the
basis of CAGE sequencing, bisulfite sequencing (BS-seq) and chroma-
tin immunoprecipitation sequencing (ChIP-seq) of threemajor histone
marks (H3K4me3, H3K27me3, and H3K9ac) in four Chinese Spring
tissues (seedling, root, embryo, and spike) (Fig. 1d–e and Supple-
mentary Data 1). A total of 117,757 CAGE-tag clusters (i.e., regions
enriched with TSS reads) were identified and annotated via the hidden
Markov model integrating reference gene models, RNA-seq data, and
epigenetic data (see Methods) (Fig. 1f, Supplementary Fig. 1a–e),
resulting in 50,362 high-confidence mRNA TSSs, 44,930 low-
confidence mRNA TSSs, and 11,452 ELE TSSs (Supplementary Fig. 1f
and Supplementary Data 2). The comprehensive TSS annotation of
coding genes enriched the annotation of alternative TSSs, upstream
open reading frames and sharp or broad types of TSS, shedding new
light on the mechanism of transcriptional regulation and alternative
protein products (Supplementary Note 1 and Supplementary
Figs. 2–8). Here, we focused on the detection and characterization of
TSSs of transcripts from ELEs described as follows.

Considerable intergenic transcription was detected, accounting
16-25% of the TSS clusters (Fig. 1g). These intergenic TSS clusters were
highly diverse among subgenomes (Supplementary Fig. 9). Compared
with the total RNA-seq signals for these intergenic TSSs, the CAGE
signals were more abundant because they included the unstable
nascent RNAs that were undetectable during the RNA-seq analysis
(Fig. 1h, e)10,25. 60% (11,452) of the intergenic TSS clusters overlapped
with H3K9ac and/or H3K4me3 (i.e., typical enhancer markers in
plants26–28) (Supplementary Fig. 1e and Supplementary Data 2); these
are referred to as ELE-RNA TSSs. The ELE-RNA TSSs clearly defined the
boundaries of H3K4me3 and H3K9ac (Fig. 1i), confirming that these
transcripts originate from the edges of ELEs. ELE-RNATSS regionswere
highly enriched with nascent transcript signals detected by other
strategies including plant native elongating transcript sequencing and
global run-on sequencing previously17 (Supplementary Fig. 10). The
genetic and epigenetic signatures that distinguished ELE-RNA TSSs
from gene TSSs were comprehensively profiled (Supplementary
Note 2, Supplementary Figs. 11–13 and Supplementary Data 3). The
transcription factor binding sites differentially enriched for ELE-RNA
andgeneTSSwereprofiled. ELE-RNAandgeneTSS sequences couldbe
apparently distinguished by the machine learning approach (AUC
value >0.86), representing a high average of true positive rates over all
possible values of the false positive rate (Supplementary Note 2 and
Supplementary Figs. 11–13). The comprehensive ELE-RNATSS atlas and
relevant epigenetic signatures are useful resources for predicting the
regulatory specificity of ELEs in common wheat.

CAGE identifies subgenome-partitioned tissue-specific tran-
scription from TE-embedded ELEs
We further examined the ELE-RNAs expressed in specific tissues
(Fig. 2a and Supplementary Data 4). ELE-RNAs are largely correlated
with nearby gene expression levels (Supplementary Fig. 14), based on
which, we developed a statistical strategy to define ELE-RNA targets by
integrating information from gene proximity and expression correla-
tion (please refer to the Methods), resulting in the definition of a
putative target listwith highdegreeof consistent tissue specificitywith
the corresponding ELE-RNAs (Fig. 2b, c). Compared with the ubiqui-
tously expressed ELE-RNAs, the sequences of tissue-specifically

Article https://doi.org/10.1038/s41467-023-42771-9

Nature Communications |         (2023) 14:7465 2



expressed ELE-RNAs were less conserved across subgenomes (Fig. 2d),
indicating a subset of tissue-specific functions of ELEs evolved inde-
pendently across subgenomes. Subgenome A-specific ELE-RNAs were
preferentially expressed in spikes, whereas ELE-RNAs specific to sub-
genomesB andDwere highly expressed in seedlings (Fig. 2e), implying
that subgenome-specific ELE-RNAs may differentially contribute to
developmental specificity.

Given that heterogeneous TE expansion is the major cause of
subgenomediversity, we next focused on the TE origin of subgenome-
diversified ELE-RNAs. Approximately 20% of the ELE-RNA TSSs are
embedded in TEs, whereas only approximately 5% of gene TSS clusters
overlapped with TEs (Fig. 2f), thus, TEs preferentially promote inno-
vation of gene distal regulation during evolution. The TEs are generally
repressed via epigenetic mechanisms (i.e., DNA methylation)29. We
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observed that TE-embedded ELE-RNA TSSs were hypo-methylated
(Supplementary Fig. 15) and harbored active epigenetic environments
comparable to ELE-RNAs in non-TE regions (e.g., enrichment of
H3K4me3, H3K9ac, open chromatin, and CpG islands) (Fig. 2g–i and
Supplementary Fig. 16), indicating that these TE-embedded ELEs are
potentially active. Comparison of the three subgenomes revealed that
subgenome A contributed more abundant TE-derived ELEs and nas-
cent transcripts (Supplementary Fig. 17).

Specific expansion of RLG_famc7.3 in subgenome A created
hundreds of spike-specific ELE-RNAs
ELE-RNAs are mainly produced by Gypsy-type LTR TEs, without sig-
nificant differences with genomic TE distribution (Fig. 3a). TEs were
classified into different families based on sequence similarity (see
Methods)30,31. Among the TE families highly abundant in common
wheat genome, the top enriched TE subfamily contributed to ELE-RNA
is RLG_famc7.3, which produces 22% of TE-initiated ELE-RNAs (Fig. 3a,
b). This subfamily was mainly detected in subgenome A (Supplemen-
tary Data 5), whose expansion occurred in the diploid progenitor after
the divergence from the A-B-D common ancestor (Fig. 3c and Sup-
plementary Fig. 18). The transcription of RLG_famc7.3-derived ELE-
RNA exhibited the most significant tissue specificity (i.e., pre-
dominantly in spikes) among the top abundant TE families contribut-
ing to ELE-RNAs (Fig. 3d, e). To elucidate the regulation of ELE-RNA
transcription, we searched for the over-represented TF-bindingmotifs
surrounding TSSs of RLG_famc7.3 TE-embedded ELE-RNAs. The most
enriched TFBSs included BPCs and RAMOSA1, which are AG-rich
motifs (Fig. 3f) affecting inflorescence branching and floral
development32–34. These motifs were more abundant in RLG_famc7.3-
initiated ELE-RNAs than in the RLG_famc7.3 TEs (Fig. 3g–h). Thus, the
expansion of RLG_famc7.3 and the acquisition of specific TF-binding
motifs likely resulted in spike-specific ELE-RNAs.

RLG_famc7.3-embedded ELEs regulate spike specificity
In order to determine whether the spike-expression of RLG_famc7.3-
embedded ELEs have functional influence on wheat development, we
compared the spike-specific ELE-RNAs initiated by RLG_famc7.3 with
loci controlling agronomic traits detectedby genome-wide association
study35. The RLG_famc7.3-initiated ELE-RNAs were mainly enriched at
loci regulating spike development and rust resistance (Fig. 4a and
Supplementary Data 6). We knocked down one RLG_famc7.3-derived
ELE-RNA higher expressed in spike using an RNA interference strategy
in the cultivar ‘JW1’ (Supplementary Data 7), which is easier for trans-
genic manipulation. Compared with the negative control transgenic
lines (CK), no significant differencewas observed in vegetative growth.
Apparent enrichment of small RNAs and reduced ELE-RNA expression
was detected in the target loci in T1 generation (Supplementary
Figs. 19–20). The spike statistics are performed in the T1 generation.

The spikes of knockdown lines developed abnormally, with a slightly
longer rachis (Fig. 4b, c) and a relatively greater distance between
spikelets (Fig. 4d). Thedispersed spikes of the knockdown lines didnot
affect the total number of grains (Fig. 4e), but they were associated
with a slight decrease in the kernel weight (Fig. 4f), suggesting that
RLG_famc7.3 likely influences the wheat yield. The spike phenotype
was consistent between the T0 and T1 knockdown lines (Supplemen-
tary Fig. 21). An examination of the expression of the genes potentially
targeted by the RLG_famc7.3-embedded ELEs revealed that 13% of
thesegeneswereexpressed at lower levels in the knockdown lines than
in the CK plants (Fig. 4g and Supplementary Data 7). The data were
correlated among independent knockdown lines with longer
rachis (Supplementary Fig. 22). Taken together, RLG_famc7.3-initiated
ELE-RNAs regulate target gene expression and common wheat devel-
opment in a spike-specific manner.

Discussion
TEs are an abundant resource for the creation of new regulatory REs in
both mammals36–41 and plants42–46, especially in common wheat with
extremely large genome harboring abundant TEs7. After differentia-
tion from a common ancestor, three diploid progenitors undergo
active TE birth and death5,31, created abundant and diversified reg-
ulatory elements, which potentially endowed common wheat with
versatile strategies for coping with internal or external changes47,48.
However, majority of TE-affected expression divergence may be tran-
scriptional drift without phenotypic consequences and a causal link is
missing. Here, we predicted the function of TE-derived ELEs via pro-
filing dynamic transcriptome of ELE-RNAs from different develop-
mental stages, detected a cohort of TE-initiated ELE-RNAs that
specifically expand in subgenome A, and demonstrated the direct
impact on regulating spike specificity. Despite that knocking down of
one ELE-RNA resulted in weak changes in spike development, which is
a complex trait cooperatively regulated by many loci, the strategy and
findings help to elucidate the causal effects of TEs on agronomic traits,
providing insight into the direct regulatory function of numerous TEs
in commonwheat, and their contribution to developmental specificity
and polyploid plasticity (Fig. 5).

It is noteworthy that the spike phenotypes of diploid progenitors
are highly diverse49. Both phenotypic and evolutionary studies inves-
tigating subgenome bias indicated that the common wheat spike
phenotype is mainly contributed by Triticum Urartu (Tu), the diploid
progenitorof subgenomeA50,51. In thepresent study, the knockdownof
RLG_famc7.3-initiated ELE-RNAs specifically expanded in Tu resulted in
aberrant expression of spike-specific genes and spike development.
Despite the phenotypic changes are relatively weak, these findings
suggest that the distinct spike phenotypes across subgenomes are
partially due to subgenome-specific TE-initiated ELEs, providing clues
for elucidating the impacts of the the long-overlooked highly

Fig. 1 | De novo identification of TSSs related to common wheat development.
a Genomic tracks illustrating the global repression of TEs by DNA methylation.
Genes are marked with gray rectangles. The region in the orange dashed box is
enlarged in b. b Genomic tracks illustrating a local hypo-methylated TE locus with
open chromatin and active histone modifications (expanded view from Fig. 1a).
c Top: average ELE-RNA expression profiles determined by the nascent RNA-
sequencing analysis surrounding hypo-methylated and random TEs. FPKM, frag-
ments per kilobase of transcript per millionmapped fragments. Bottom: heatmaps
of CG, CHG, and CHH DNA methylation rates around each hypo-methylated TE
locus that overlaps with an ELE-RNA. d Workflow of the experimental design. e.
Genomic tracks illustrating the CAGE signals in the TSSs of the genes and ELEs in
four tissues. CAGE(+/−) represents the positive/negative strand for the CAGE-seq
analysis. f Workflow of the genome-wide TSS annotation based on the integration
of CAGE-seq, transcriptome, and epigenome data. CAGE-seq data were generated
from embryo, seedling, spike and root. The CAGE-TSS is defined as a regionwith an
enriched CAGE signal detected by CAGEr. CAGE-TSSs located at the 5′-end of

annotated genes, or de novo assembled transcripts with coding potential are
defined as gene TSSs, whereas intergenic noncoding CAGE-TSSs overlapped with
active epigenetic markers indicative of enhancer activity, including enrichment of
H3K4me3 and H3K9ac, are defined as ELE-TSSs. CAGE signals located at the 5′-end
of the genes or transcripts with a relatively weak signal, but supported by epige-
netic features includingH3K9ac,H3K4me3,H3K36me3, RNA-sequencing andopen-
chromatin accessibility, are classified as low-confidence (LC) gene TSSs. g Donut
plot showing the distribution of CAGE clusters in genic and intergenic regions in
four tissues. h Scatter plot showing the transcription levels in intergenic regions as
determined by CAGE-seq (x-axis) and total RNA-seq (y-axis) data. Each dot repre-
sents a CAGE cluster. The lines represent contours. i Heatmaps of the CAGE-TSSs
surrounding the ELEs defined by the H3K4me3 and H3K9ac peaks. The heatmaps
present the signal densities for CAGE-TSSs (left) and H3K4me3 or H3K9ac (right);
peaks are ordered according to the increasing length of ELEs. Source data are
provided as a Source Data file.
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abundant TEs in wheat. Compared to other TE-derived ELEs,
RLG_famc7.3-derived ELEs are less conserved between diploid pro-
genitor and hexaploid common wheat and are largely conserved
across hexaploid and tetraploid wheat (Supplementary Fig. 23), indi-
cating this subfamily of TEs possibly underwent some sort of selec-
tion during domestication following hexaploidization, and were fixed
in polyploid wheat.

Whether TE-embedded TFBSs are mainly responsible for driving
TE propagation or are co-opted for the regulation of host genes is

unclear37. Recent research suggested that germline activity increases
the likelihood of TE inheritance and expansion52. We performed an
ALE-seq (short for amplificationLTRs of extrachromosomal linearDNA
(eclDNA) followed by sequencing)53 to detect the transpositional
activity of TEs in nine common wheat tissues, as well as in a common
wheat population and in the diploid progenitor of subgenome A
(Supplementary Fig. 24). Almost no eclDNA was detected for
RLG_famc7.3 (Supplementary Data 8). We analyzed the results of the
previously published dual luciferase reporter assay17 and found that

Fig. 2 | Tissue-specificity of subgenome-biased enhancer-like-element tran-
scripts. aHeatmap showing tissue-specific ELEs expression. RPM, reads permillion
mapped reads. bHeatmap showing the z-scored expression of the predicted target
genes for the corresponding ELEs. c Enrichment of the tissue-biased genes and
tissue-specific ELE targets. The p-value and odds ratio were determined by two-
tailed Fisher’s exact test with the total genes as the background. d The bar plot
illustrates the expression of homoeologous regions corresponding to tissue-
specific and ubiquitously expressed ELEs. Pairwise comparisons were made for the
A, B andD subgenomes. Diagramswithin dashed boxes illustrate categories of ELEs
based on homology and expression level. Homoeologous ELEs within collinear

regions between subgenomesA andB are connectedbyblack lines. In this example,
the homeolog of ELE1 is expressed but the homeolog of ELE2 is not expressed.
e Left panel, the abundance of subgenome-common and -specific ELE-RNAs. Right
panel, enrichment of each ELE-RNA group in tissue-specifically expressed ELE-
RNAs. The total ELE-RNAs were used as background. f Fraction of CAGE-detected
gene and ELE-RNA TSSs initiated from TEs in the A, B, and D subgenomes.
g–i Epigenetic profiles 3 kb up- and down-stream of TE- and non-TE-initiated ELE-
TSSs, including the active histone marks H3K9ac and H3K4me3, and open chro-
matin characterized by DNaseI-seq. Source data are provided as a Source Data file.
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out of the 22 active fragments, 7 of themwere derived specifically from
RLG_famc7.3 and exhibited enhancer activity. Thus, it is likely that a
subset of TEs generated active enhancers and mediated reciprocal
adaptation between TEs and hosts.

Neither the origin nor the function of eRNAs in plants is clear.
The current study providedmultiple lines of evidence supporting the

functional relevance of TE-initiated ELE-RNAs with host gene reg-
ulation and developmental specificity. First, we determined that
capped ELE-RNA transcription specificity is predictive of the impact
of ELE specificity in transcriptional regulation (Fig. 2a–c). Second, we
revealed the active epigenetic architecture and the decrease in the
repressive DNA methylation surrounding ELE-RNAs (Fig. 2g–i and

Fig. 3 | Subgenome A-specific RLG_famc7.3 expansion and TFBS acquisition
created spike-specific ELE-RNAs. a Donut plot showing the distribution of TE
super families in the TE-ELEs and the overall genome. b The plot displays the top
40most abundant TE subfamilies. The height of each bar represents the TE length
of the corresponding subfamily. The height of each point represents the number of
ELEs embedded in each subfamily. The size of each point represents the enrich-
ment score of the corresponding TE subfamily generating ELE-RNAs. The whole
genome was used as background. c Abundance of RLG_famc7.3 and RLG_famc13 in
wheat species of different ploidy levels and relevent grasses. Phylogenetic analysis
suggests that RLG_famc7.3 has expanded in Triticum Urartu (AA). d Enrichment of
tissue-biased transcription of ELE-RNAs initiated by different TE families. Two-
tailed Fisher’s exact test was used to test the enrichment of TE-ELE-RNAs and tissue
specific ELE-RNAs. The overall ELE-RNAs as background. The TE subfamilies

contributing the most abundant ELEs are presented. e Average expression profiles
of the full-length RLG_famc7.3members in different tissues as reflected by the total
RNA-seq density, whichwasnormalized by the LTR length. f Scatter plot comparing
themotif abundance in RLG_famc7.3-initiated ELEs and in other ELEs. The BPCs and
RAMOSA1 are preferentially present in RLG_famc7.3-initiated ELEs. g–h Box plots
showing the distributions of BPC1 (g) and RAMOSA1 (h) motif abundances for
RLG_famc7.3 with (n = 167) or without (n = 7841) ELE-RNAs. Other LTR sequences
were selected as the controls (n = 450174). Full-length LTR retrotransposons were
used for the motif scan. The significance of the differences was determined
according to the two-tailed Welch two-sample t-test. Horizontal lines in boxplots
show median, hinges show IQR, whiskers show 1.5 × IQR, points beyond 1.5 × IQR
past hinge are shown. Source data are provided as a Source Data file.
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Supplementary Fig. 15). Third, we detected the considerable enrich-
ment of flowering- and floral development-related TF-binding motifs
in spike-specific ELE-RNAs (Fig. 3f–h). Fourth, we detected the
changes in spike development (Fig. 4 and Supplementary Fig. 21)
following the knockdown of RLG_famc7.3-initiated ELE-RNAs. Similar
phenotype was observed when the targeted RLG_famc7.3-initiated
ELE-RNA was over-expressed (Supplementary Fig. 25), possibly due
to co-suppression with increased small RNA (Supplementary Fig. 25).
However, we still can’t distinguish whether the impacts on spike
development in RNA interference lines are due to ELE-RNAs or
directly due to ELEs, since in addition to 21 nt small RNAs commonly
repressing target RNA expression, we also detected abundant 24 nt
small RNAs which may contribute to RNA-dependent DNA methyla-
tion. Consistently, apparent DNA methylation was detected in the
RNA interference targeted regions by Chop-PCR based on partial
digestion by methylation-sensitive restriction enzymes followed by
PCR amplification54 (Supplementary Fig. 26). Together, the early
production of ELE-RNAs and close association with ELE activity
makes them an excellent marker for predicting the functions of
ELEs without identifying their exact target genes. Further genetic

engineering targeting the functional regulatory elements or their
transcripts provides greater flexibility for the spatiotemporal opti-
mization of agronomic traits.

Methods
Plant materials and growth conditions
Common wheat (Triticum aestivum cultivar ‘Chinese Spring’) seeds
were surface-sterilized via a 10-min incubation in 30% H2O2 and then
thoroughly washed five times with distilled water. The seeds were
germinated in water for 3 days at 22 °C. The germinated seeds with
residual endosperm were transferred to soil (1:1:3 mixture of vermi-
culite: perlite: peat soil) or theHoagland solution andgrownunder 16 h
light/ 8 h dark conditions at 22 °C in the greenhouse. The seedlings
(above-ground parts) in the soil were harvested after 9-day growth.
The roots in the Hoagland solution were harvested after 9-day growth.
The spikes at the booting stage (Feeke 10) were harvested. The fresh
immature embryos (14 days post anthesis) were isolated and either
frozen in liquid nitrogen for RNA isolation or Bisulfite-seq and directly
vacuum-infiltrated with a formaldehyde cross-linking solution for
ChIP-seq assay. Wheat cultivar ‘JW1’ was used to do the genetic

Fig. 4 | Functional relevance of RLG_famc7.3-initiated spike-specific ELE and
development. a GWAS traits with enriched causal variants surrounding spike-
specific ELE-RNAs initiated by RLG_famc7.3. Spike-related terms are provided. All
enriched terms are listed in Supplementary Data 6. b Mature spikes of the T1

generation knockdown lines and CKs. Themain spikes of each plant are presented.
The phenotypes of the T0 generation are presented in Supplementary Fig. 21.
c–fComparison of the spike phenotypes between the knockdown lines andCKs. All
of the spikes from each plant were examined (n = 5 for CK; n = 22 for RNAi). The

significance of the differences was determined according to the two-tailed Welch
two-sample t-test. Horizontal lines in boxplots show median, hinges show IQR,
whiskers show 1.5 × IQR, points beyond 1.5 × IQR past hinge are shown.gMAplot of
the differences between the knockdown lines and CKs in terms of the expression of
the genes targeted by RLG_famc7.3-initiated ELEs. Differentially expressed genes
with | log2(fold-change)| > 1 and P <0.05 are in orange (downregulated genes) and
blue (upregulatedgenes). Theother genes are ingray. Sourcedata areprovidedasa
Source Data file.
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transformation and grownunder 16 h light/8 h dark conditions at 22 °C
in the greenhouse.

CAGE-seq library construction and sequencing
Total RNAwas treatedwith RQ1 DNase (promega) to remove DNA. The
quality and quantity of the purified RNA were determined by mea-
suring the absorbance at 260nm/280nm (A260/A280) using Nano-
drop One (Thermo). RNA integrity was further verified by 1.5% agarose
gel electrophoresis. For each sample, 1μg of total RNA was used for
CAGE-seq library preparation. The total RNA was treated with T4
polynucleotide kinase (NEB) at 37°C for 30min and subsequently
digested with Terminator 5´-Phosphate-Dependent Exonuclease
(Ambion) at 30°C for 30min to enrich the cappedmRNA.Next, reverse
transcription was performed with RT primer harboring a 3’-adaptor
sequence and randomized hexamer. Subsequently, the 5’adaptor
harboring three additional rG at the 3’terminus was added to the RT
reaction and incubated for another 30min to allow template switching
and tagging. The cDNAs were treated with Exonuclease I (epicentere)
to digest theprimers andpurified. Then the cDNAswereamplifiedwith
PCR primers (Illumina) and the PCR products corresponding to
250–500 bps were purified and quantified, then stored at −80 °C until
sequencing. For high-throughput sequencing, the libraries were
applied to Illumina Novaseq 6000 system for 150 bp paired-end
sequencing.

RNA-seq, ChIP-seq and Bisulfite-seq library construction and
sequencing
For RNA-seq, more than 2μg total RNA was used to prepare each
sequencing sample. Total RNA-seq libraries were constructed and
sequenced by Novogene (Beijing, China). ChIP-seq assays were per-
formed using specific antibodies to H3 trimethyl-Lys 27 (Millipore,
07360,Upstate, USA), H3 trimethyl-Lys 4 (Abcam, ab8580, Cambridge,
England) and H3 acetyl-Lys 9 (Millipore, 07352, Upstate, USA). The
dilution is 1:100. For each ChIP-seq assay, more than 10 ng ChIP DNA
was used to prepare each sequencing sample55. The 2.2μg of DNA
extracted from each sample was used to prepare the bisulfite
sequencing samples. Libraries were constructed and sequenced by
Genenergy Biotechnology Co. Ltd. (Shanghai, China) and Novogene
(Beijing, China). The libraries were sequenced with the HiSeq X Ten
system (Illumina, San Diego, California, USA) to produce 150-bp
paired-end reads. Overall, we generated RNA-seq, ChIP-seq and

Bisulfite-seq data for the root, spike, and embryo in this study. The
seedling data used in the analysis was obtained from a previously
published study26.

Processing of CAGE-seq data
For CAGE-seq data, only the R1 reads were kept formapping. Cutadapt
(version 1.18)56 was applied to trim 3’ adaptors and 9 bases at the 5’end
which included randomized hexamer and three additional rG. Bases
with low-quality scores (<20) and short reads (length <20) were
eliminated. We then used SortMeRNA (version 2.1b) program57 to
remove the reads originating from chloroplast, mitochondria and
rRNA. The remaining clean reads were mapped to the International
Wheat Genome Sequencing Consortium (IWGSC) reference sequence
(version 1.0) with Bowtie2 (version 2.3.5)58. Only unique mapped reads
were used for analysis. To reduce false positive 5’ end reads due to
library construction, we aligned total reads without removing the 9
bases at the 5’ end and the reads aligned with less than 3 mismatches
were eliminated. The 5′ coordinates of R1 reads were used as the
position of the transcription start sites. R package CAGEr (version
1.28.0)59wasperformed to call theCAGE-tagclusters (CTC). Each tissue
was called separately. For the tissue-specific clusters, only CTCs sup-
ported by at least two samples were kept. TSSs of four tissues were
then merged into a larger and unique TSS database. The TSSs with
lengths longer than 10 bp were defined as broad TSSs.

CAGE-TSS annotation
To classify the CTCs and assign the protein-coding TSS to the corre-
sponding genes, we first used the RNA-seq of 10 wheat tissues to
assemble transcripts and combined the IWGSC ref1.1 to generate a
comprehensive coding gene model database. The CTC located in the
5’UTR region or 500bp upstreamof the TSS was assigned to that gene
and defined as gene-TSS (Supplementary Fig. 1d). CTCsmore than 3 kb
away from the genemodels were defined as intergenic TSS. Intergenic
TSSs with active enhancer markers for H3K4me3 or H3K9ac were
defined as ELE-TSSs (Supplementary Fig. 1d).

In addition to the CTCs detected above, we also noticed weak
CAGE signals around or within genes, some of whichmay be authentic
start sites for transcription. We integrated epigenetic data, nascent
RNA-seq and CAGE-seq data to characterize chromatin states based on
Hidden Markov Model using chrHMM (version 1.23) (Supplementary
Fig. 1a, b)60. Genome bin size was set to 500bp to quantify

Fig. 5 | Model illustrating the evolution of TE-initiated ELEs generate the
subgenome-biased spike specificity in common wheat. Lineage-specific expan-
sion of TE subfamilies contributed to subgenome-divergent ELEs. Further

acquisition of spike-specific TF-binding sites resulted in the spike-specific ELE-RNA
transcription, which is associated with regulating subgenome-biased spike speci-
ficity in common wheat.
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modifications and transcript levels. The “LearnModel” algorithm was
used to classify the genome into 15 chromatin states based on signal
combinations. Data from seedlings were used for training. This dataset
contains epigenetic profiles, including 8 chromatin modification ChIP-
seq data, Pol-II ChIP-seq, and DNaseI-seq, and transcriptional data,
including GRO-seq, pNET-seq, CAGE-seq, and RNA-seq.

Different states represent distinctive chromatin architectures and
are reflected by the combinatorial patterns ofmultiplemarks. State 5 is
characterized by the enrichment of CAGE signals, nascent tran-
scriptome signals (enriched at TSS), and promoter-associated epige-
netic modifications H3K4me3 and H3K9ac. States 2–3 and states 6–7
are enriched for RNA-seq and transcription elongation-related epige-
netic markers H3K36me3 and H3K4me1 (Supplementary Fig. 1a). The
transition probabilities from state 5 to state 2–3 and state 6–7 are
higher (Supplementary Fig. 1b). These results indicate that state 5
contains a subset of active TSSs. 44,930 weak CAGE tag clusters
located in state 5 were recognized as low-confidence gene TSS (Sup-
plementary Fig. 1c).

Processing of ChIP-seq, Bisulfite-seq and RNA-seq data
The sequencing reads were trimmed with the Trim Galore (version
0.6.4) and cutadapt56. For RNA-seq, clean reads were aligned with
HISAT2program (version 2.1.0)61. SortMeRNA (version 2.1b)57 was used
to remove reads originating fromchloroplast,mitochondria and rRNA.
The featureCount program of the Subread package (version 1.5.3)62

was used to determine the RNA-seq read density of the high-
confidence genes in the IWGSC RefSeq genome assembly (version
1.1)5. The DEseq2 R package63 was used for detecting differentially
expressed genes based on the following criteria: |log2 fold-change|> 1
and P < 0.05. The StringTie program (2.1.4)64 was applied to assemble
the potential transcripts using 10 RNA-seq samples including different
developmental states. Transdecoder (version 5.5.0) (https://github.
com/TransDecoder/TransDecoder/wiki) and hmmsearch (version
3.2.1)65 were applied to annotate the transcripts. For ChIP-seq data,
clean reads were aligned with bwa program (version 0.7.17-r1188)66.
The MACS2 (version 2.1.1) program67 with parameters “--nolambda
--nomodel” was used to identify the peaks. For Bisulfite-seq data, the
clean reads were aligned by the Bismark program (version 0.19.0)68

with the default setting, and non-unique alignments were removed.
The extent of the cytosine methylation was determined by the tool
bismark_methylation_extractor implemented in the Bismark program.
Next, the methylation ratio of cytosines was calculated as the number
of mCs divided by the number of reads covering the position. The
negative values in the data indicate negative strands. Bases covered by
less than three reads were considered low confidence positions and
their methylation ratios were not recorded.

5’RACE validation
CAGE-TSSs inconsistent with the IWGSC annotation were randomly
selected for 5’RACE validation. Total RNA was extracted from the leaf
for reverse transcription. PolyC was added to the 3’end of cDNA. The
adaptor-poly (G) and adaptor-nest-PCR primers were used for nested
PCR. The PCR products were sent for Sanger sequencing. All primers
used in this study are listed in Supplementary Table 1.

Motif analysis
For ELEs motif enrichment analysis, regions 1 kb upstream and down-
stream of the TSSs were selected for motif scan. The motifs from
JASPAR-plant were scanned by the Find Individual Motif Occurrences
program of the MEME software toolkit69 with the parameter “--max-
stored-scores 1000000”. The position and the number of eachmotif in
each TSS were then recorded and summed. The background regions
were randomly generated from the genome with the same length
distribution. For motif comparison between ELEs and promoters or
between RLG_7.3-ELEs and other TE ELEs, the number of motif

occurrences was normalized by the total number of TSSs of the given
group. For motif comparison between different types of RLG_7.3 TEs,
the annotated full-length RLG_7.3 TEs were used to scan themotif. The
parameters were the same as above.

Kmer-SVM training for TSS classification
The R package “gkmSVM“70 was applied for training an SVM model to
predict the type of TSSs. Sequences 250bp up- and down-stream of
TSSwere used. 80%of ELE-TSSs and the samecount of gene-TSSs were
taken as the training dataset and the remaining TSS were used as the
prediction dataset. The output of the training and prediction datasets
were combined to find the cutoff for the predictionmodel. Therewere
1588 ELE-TSSs could not be predicted correctly. Blastn was used to
align these ELE-TSSs with all gene-TSS sequences to obtain the
alignment ratio.

Connect target genes to ELEs
The ELE-TSSs andgene-TSSswithin 2Mwere chosen as pairs. All CAGE-
seq replications of 4 tissues were used to calculate the CAGE signal
(represented by RPM) correlation. The RP score of a gene was defined
as the sum of the distance-weighted ELE contributions and calculated
using the following formula71:

RP=
Xk

i= 1

2
�di
d0 ð1Þ

The parameter d0 is the decay distance of the weight function and
was set to 100 kb here. The k ELEs near the gene (within the distance of
20 * d0) were used in the calculation, and di is the distance between the
ith ELE and the gene. Genes within 2M from the ELEs with CAGE signal
correlation greater than 0.5 and the RP score in the top 50% were
determined as predicted targets.

Hi-C data analysis for promoter and ELEs interactions
Hi-C data was downloaded from the NCBI BioProject database
(accession number GSE1338859. The data mapping and processing
were performed as reported8. The contact matrix in 50kb bin was
generated with Juicer72. The interaction strength between ELEs and
target genes was considered as the interaction of the
corresponding bins.

ELEs comparison across subgenomes
To compare ELEs across subgenomes, we first obtained the homo-
eologous sequence of ELEs in other subgenomes. Due to the presence
of many repetitive sequences in wheat genome, the syntenic blocks of
the ELEs between subgenomes were detected to narrow down the
search space. Specifically, MCScanX package73 was applied to obtain
the collinear genes between subgenomes. The regions between colli-
near genes were treated as syntenic blocks. ELEs in regions with syn-
tenic block in other subgenomes were extracted for statistics. Blastn
was used to align the ELE-TSS and its downstream 200bp sequence to
the corresponding syntenic regions and the evalue cutoff was set to
0.01. Aligned ELEs were categorized as “with homology sequence”,
otherwise as “without homology sequence”. Next, ELEs were classified
as with or without homology ELEs based on whether the homologous
fragments have active chromatin modification peaks.

TE annotation
TEs were annotated by CLARITE5. Specifically, the whole genome of
‘Chinese Spring’ was searched based on sequence similarity using a
high-quality TE databank called ClariTeRep. This approach allows the
identification of the overall positions, types and families of TEs. Clar-
iTeRep is a database containing sequences present in TREP, a curated
library of Triticeae TEs from all three subgenomes, as well as TEs
manually annotated in a previous pilot study30 on chromosome 3B.
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This resulted in the identification of 14 superfamilies, 451 families and
516 subfamilies. For example, the superfamilies include Gypsy (RLG),
Copia (RLC), and CACTA (DTC), the families include RLG_famc7 and
DTC_famc5, and RLG_famc7.3 and RLG_famc7.1 are subfamilies of
RLG_famc7. The full-length LTRs were annotated by the LTRharvest
suite (version 1.5.9)74. The elements in TEs were distinguished by
LTRdigest implemented in LTRharvest75. The TE families and sub-
families were designated according to the rules of the ClariTeRep
database30,31. The ELE-TSSs embedded in the annotated TEs were
defined as TE-ELEs.

TE insertion time calculation
The TE insertion time was determined on the basis of the divergence
between the 5′ and 3′ LTRs5. Briefly, the sequences of long terminal
repeat regions in both ends of full-length LTR were extracted and
aligned by prank (v.170427)76. The distance was calculated by emboss
dismat (version 6.6.0.0)77 and corrected by applying the Kimura
2-parameter. The insertion time was estimated using the formula:

time=distance=ðmutation rate*2*100Þ ð2Þ

with a mutation rate of 1.3*10-8 per base pair per generation.

ALE-seq library construction, sequencing and processing
ALE-seq is a technology designed to detect active LTR retrotransposon
by amplifying eclDNA. The amplification involves two reactions:
in vitro transcription and reverse transcription(Supplementary
Fig. 24a)53. Plant materials of seedling, root, embryo and spike same as
above and other samples (Supplementary Data 8) were used to extract
DNA and construct ALE-seq libraries53. 500 ng genomic DNA was used
for adapter ligation and the adapter-ligated DNA was purified by
VAHTS DNA Clean Beads (Vazyme, N411). In vitro transcription reac-
tions were performed using an Ambion MEGAscript T7 RNA synthesis
kit, the RNA product was purified and quantificated. Then 3ug purified
RNA was subjected to reverse transcription with pooled PBS_Illumina
primers. After the reverse transcription reaction, 1 µl of RNase A/T1
(Thermo Fisher) was added to digest non-templated RNA. Finally,
Single-stranded first strand cDNA was PCR-amplified by 25 cycles
according to used adapter primers and the PCR product was purified
by VAHTS DNA Clean Beads. Libraries were sequenced by Novogene
(Beijing, China) to generate 150bp paired-end reads. The custom
reverse transcription primers are shown in Supplementary Table 2.
Cutadapt56 was used to trim the raw sequencing reads. Clean reads
were aligned to the IWGSC reference sequence (version 1.0)5 with
Bowtie2 (version 2.3.5)58. IGV78 was used to visualize the sequencing
data. For the alignment-based approach, the forward and reverse reads
were merged to yield the full-length fragment sequences, then calcu-
late the coverage in the long terminal regions of LTR retrotransposon
(Supplementary Fig. 24b). Only the full-length fragments started from
the 5’ of the long terminal regions were counted (Supplementary
Fig. 24c).

GWAS data analysis
The GWAS results were downloaded from T3 database (https://wheat.
triticeaetoolbox.org/genome/gwas.pl)35. The variant loci were exten-
ded based on previously published linkage disequilibrium decay
distance79. Fisher’s exact test was used to determine the enrichment of
the causal variants of GWAS traits in spike-specific expression ELEs.

Plant transformation for RNAi silencing and phenotyping
The cultivar ‘JW1’ was used for RNA interference. Before experimental
validation, we systematically compared the sequences and epigenetic
profiles of ELEs between ‘JW1’and CS, to ensure the presence and
activity of targeted ELEs. For the ELEs with conserved sequences
between the two cultivars, the epigenetic activity is highly consistent;

352 of 411 spike active RLG_famc7.3 ELEs also had active chromatin
states in JW1 spikes (Supplementary Fig. 27a).

The sequences downstream 1–200 bp and 200–400bp of the
RLG_famc7.3 ELE- TSS located in JW1 and have identical sequences in
CS (Supplementary Fig. 27b) were synthesized and cloned into
pEXT06/g to construct RNAi silencing vector. The plasmid was then
transformed into wheat cultivar ‘JW1’ via Agrobacterium-mediated
transformation by Wimi Biotechnology (http://www.wimibio.com/).
The primer sequences used in this study are shown in Supplementary
Table 3.

A total of 38 transgenic lines and WT were grown in the green-
house. The spike at the booting stage (Feeke 10) of 3 WT and 4
transgenic lines of the T0 generation were taken to extract RNA.
Libraries were constructed and sequenced by Hanyubio Co. Ltd.
(Shanghai, China) to generate 150-bp paired-end reads. The RNA-seq
datawereprocessedwith the samemethodas above. The differentially
expressed genes were defined based on the following criteria: |log2
fold-change |> 1 and P <0.05.

A total of six transgenic T1 and WT lines were grown in the
greenhouse at 22 °C under 16 h light/8 h dark conditions for pheno-
typing. Each line was planted with 1–3 seeds and the total mature
spikes were harvested to characterize the spike and yield features
(Supplementary Table 4). ImageJ was used to measure the scaled pic-
tures. The rachis length does not include awns. The node length is the
rachis length divided by the number of spikes.

smRNA-seq, DNA methylation measurements and RT-qPCR at
RLG_famc7.3-ELE loci to evaluate the efficiency of RNAi silencing
For smRNA-seq, the spike at the booting stage (Feeke 10) of 2 trans-
genic lines of the T1 generation and WT were taken to extract 4μg
RNA. Libraries were constructed and sequenced by Novogene (Beijing,
China) to generate 50-bp single-end reads. The reads were trimmed
with cutadapt(version 1.18)56 to remove Illumina adapters and low-
quality bases (quality score < 30). Shortstack (version 3.8.5)80 was
utilized to map the 21-nt and 24-nt clean reads. Initially, default para-
meterswere applied to identify smRNA clusters generated by the RNAi
strategy. The reads mapping to the active RLG_famc7.3 were subse-
quently isolated and remapped using bowtie (version 1.1.2)81 with the
parameter “-a -l 5 -e 100” to allow for mismatches. This approach
facilitated the identification of additional RLG_famc7.3-ELEs that could
be targeted by enhanced smRNA. Subsequently, Chop-PCR (methyla-
tion-sensitive enzyme digestion followed by PCR) was designed for the
primary targeted RLG_famc7.3-ELE and one of the other RLG_famc7.3-
ELEs that could be targeted by the enhanced smRNA. Chop-PCR is a
targeted DNA methylation detection technique that uses partial
digestion by methylation-sensitive restriction enzymes (MSREs) fol-
lowed by PCR amplification. The presence of cytosine methylation at
the cleavage sites of theMSREs protects theDNA against digestion and
therefore can be amplified using PCR54.

For Chop-PCR, the genomic DNA of the same material was
extractedusingCTABmethod to evaluate theDNAmethylation level of
the RLG_famc7.3-ELEs. 100 ng of genomic DNA was incubated 30mins
with the methylation-sensitive restriction enzyme NlaIII (NEB). The
digested DNA was used to amplify the smRNA targets by semi-
quantitative RT-PCR. Non-digested genomic DNA was simultaneously
amplified as controls. The Chop-PCR primers are listed in the Sup-
plementary Data 7.

For RT-qPCR, total RNA of the same material was extracted using
RNA-easy Isolation Reagent (Vazyme #R701-01). As ELE-RNA may not
be polyadenylated, the RNA was then treated using First Strand
Synthesis Kit (Vazyme #R312) with random hexamers and oligo(dT)
20VN Primers for reverse transcription. The expression levels of indi-
vidual ELE-RNAs were quantified by qPCR using SYBR green master
mix (Vazyme #Q111) on the BIO-RAD CFX96 real-time system accord-
ing to established protocols. TaActin (TraesCS1A01G274400)was used
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as an internal control to normalize the expression levels of the ELEs.
Three biological replicates were applied for each ELE. Primers are lis-
ted in Supplementary Table 5.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated during the current study include CAGE-seq,
RNA-seq, ChIP-seq, Bisulfite-seq, smRNA-seq and ALE-seq are available
in the Gene Expression Omnibus (GEO) repository under accession
GSE198284. Other datasets including Chinese Spring Hi-C data9, RNA-
seq, ChIP-seq and Bisulfite-seq of Chinese Spring seedlings26, nascent
RNA sequencing17, RNA-seq of Chinese Spring tissues during devel-
opment and under treatments27 were published previously. Source
data are provided with this paper.

Code availability
Scripts are available at Github [https://github.com/yilinlinyi/wheat_
ELE_spike].
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